作为一名科研人员,也许你经常会在不同类型的论文中看到各种令人称赞的算法框图或者神经网络框图,作为一名AI从业者,你经常需要在你的论文、Poster或者Slide中添加一些神经网络框图,作为新手的我也经常遇到这个问题,但是一直并没有找到一个好的工具,很多大佬们都说利用PPT或者Visio等就能绘制成功,我的想法是这样的,尽管很多工具都能完成同样的一项工作,但是它们的效果和效率肯定是不一样的,你用Visio需要2个小时的一张图或者利用另外的一个工具仅仅需要花费20分钟,这可能就是所谓的区别,如果你感觉你的时间很多,浪费一点无所谓,请高手们绕过这篇博文。我花费了一点时间在网上找了很多有用的工具,在这里总结汇总一下,朋友们各取所好!
Lightweight image super-resolution with enhanced CNN
【磐创AI导读】:本文主要带大家一起剖析ResNet网络,查漏补缺。想要学习更多的机器学习、深度学习知识,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
以神经网络为基础的深度学习技术已经在诸多应用领域取得了有效成果。在实践中,网络架构可以显著影响学习效率,一个好的神经网络架构能够融入问题的先验知识,稳定网络训练,提高计算效率。目前,经典的网络架构设计方法包括人工设计、神经网络架构搜索(NAS)[1]、以及基于优化的网络设计方法 [2]。人工设计的网络架构如 ResNet 等;神经网络架构搜索则通过搜索或强化学习的方式在搜索空间中寻找最佳网络结构;基于优化的设计方法中的一种主流范式是算法展开(algorithm unrolling),该方法通常在有显式目标函数的情况下,从优化算法的角度设计网络结构。
近年来,深度学习在计算机视觉各个领域中的应用成效显著,新的深度学习方法和深度神经网络模型不断涌现,算法性能被不断刷新。
【导读】:本文主要带大家一起剖析ResNet网络,查漏补缺。想要学习更多的机器学习、深度学习知识。
这一年来一直在做高效网络设计的工作,2018年即将结束,是时候写一篇关于高效网络设计的总结。
下面我们主要以一些常见的网络结构去解析,并介绍大部分的网络的特点。这里看一下卷积的发展历史图。
寄语:让计算机自己去学习和训练规则,是否能达到更好的效果呢?自动机器学习就是答案,也就是所谓“AI的AI”,让AI去学习AI。
在规划和构建网络信息系统的早期阶段,您需要规划系统的整体网络架构并创建网络拓扑图以满足您的业务需求,根据您的业务需求合理化网络区域划分,确定网络边界并降低系统风险。 网络架构是指对由计算机软硬件、互联设备等构成的网络结构和部署,用以确保可靠地进行信息传输,满足业务需要。网络架构设计是为了实现不同物理位置的计算机网络的互通,将网络中的计算机平台、应用软件、网络软件、互联设备等网络元素有机连接,使网络能满足用户的需要。一般网络架构的设计以满足业务需要,实现高性能、高可靠、稳定安全、易扩展、易管理维护的网络为衡量标准。
可以看到各大主流框架基本都支持Python,目前Python在科学计算和数据挖掘领域可以说是独领风骚。虽然有来自R、Julia等语言的竞争压力,但是Python的各种库实在是太完善了,Web开发、数据可视化、数据预处理、数据库连接,爬虫等无所不能,有一个完美的生态环境。仅在数据挖掘工具链上,Python就有Numpy、SciPy、Pandas、Scikit-learn、XGBoost等组件,做数据采集和预处理都非常方便,并且之后的模型训练阶段可以和TensorFlow等基于Python的深度学习框架完美衔接。
据说它号称mac上的Visio,不仅曾经获得过苹果设计奖,还能利用Visio的导出函数来导入、导出Visio的XML文件,使用苹果电脑和ipad的科研同志有福啦,这款软件可以完美取代Visio!矢量图、原型、流程图等等都不在话下!
自 2012 年以来,经过视觉领域诸多学者们的不懈努力,「物体识别」、「人脸检测」等传统任务的性能在一定程度上达到饱和,因此纵观本届 979 篇入选论文,我们会看到研究者们纷纷将目光转向近年来的一些新兴问题。在今年,商汤的研究者们就大规模分布式训练、人体理解与行人再识别、三维场景理解与分析、底层视觉算法、物体检测、识别与跟踪、深度生成式模型、视频与行为理解等多个问题展示了自己的最新工作。
其实这篇文章很早之前就准备写,但由于各种事情耽误,加上自己对一些细节没有理解透彻,所以一直没有动笔。
本文是来自AOMedia Symposium 2019的演讲,讲者是来自于杭州师范大学的Dandan Ding。本次演讲以AV1为例,主要讲述了使用神经网络做环内滤波的两个问题,即如何设计网络结构和如何嵌入网络。
本文为52CV群友Mr.Chen投稿,深入解读了CVPR 2019 跟踪方向的论文Deeper and Wider Siamese Networks for Real-Time Visual Tracking,谷歌学术显示该文公开一年来已有47个引用,值得做相关方向的同学参考。
url:[https://arxiv.org/pdf/1703.01513](https://arxiv.org/pdf/1703.01513)
来自北京大学DAIR实验室与腾讯TEG机器学习平台部Angel Graph团队共同完成的研究斩获WWW 2022唯一最佳学生论文奖(Best Student Paper Award)。 直播预约 直播主题:可扩展的图神经结构搜索系统 | WWW2022 直播时间:6月1日 14:30-16:00 讲师介绍: 张文涛 腾讯TEG机器学习平台部 Angel Graph团队应用研究员 北京大学计算机学院2020级博士生,TEG机器学习平台部Angel Graph团队成员。以第一作者在机器学习(ICML,Neur
循环神经网络(二) ——GRU、LSTM、BRNN、deep RNN (原创内容,转载请注明来源,谢谢) 一、概述 本文主要讲述RNN的其他结构,这些结构比RNN更常用,而且对于自然语言处理,有更高效
自2012年CNN的imagenet 上的突破,以神经网络网络为基础的深度学习开始风靡学界和工业界。我们来看一张图片,关于google 内部深度学习项目的数量。而且应用领域极广,从Android 到 药品发现,到youtube。
近年来,随着深度学习的发展和大规模数据集的出现,深度学习在很多领域也取得了进展,但其中「人脸复原」(Face Restoration)任务仍然缺乏系统性的综述。
Tensorflow由Google Brain谷歌大脑开源出来的,在2015年11月在GitHub上开源,2016年是正式版,2017年出了1.0版本,趋于稳定。谷歌希望让优秀的工具得到更多的去使用,所以它开源了,从整体上提高深度学习的效率。在Tensorflow没有出来之前,有很多做深度学习的框架,比如caffe,CNTK,Theano,公司里更多的用Tensorflow。caffe在图像识别领域也会用。Theano用的很少,Tensorflow就是基于Theano。中国的百度深度学习PaddlePaddle也比较好,因为微软、谷歌、百度它们都有一个搜索引擎,每天用户访问量非常大,可以拿到用户海量的数据,就可以来训练更多的模型。
论文地址: https://arxiv.org/pdf/2001.10249.pdf
这是 PaperDaily 的第28篇文章 本期推荐的论文笔记来自 PaperWeekly 社区用户@duinodu。本文研究的问题是深度学习中的网络工程问题。如何设计更好的网络结构,是目前的一个研究热点。这样的网络结构一旦被设计出来,可以马上用于很多其他任务。 本文贡献主要有两点: 1. 把语法模型和深度神经网络模型结合起来,设计的模型同时兼顾特征的 exploration and exploitation(探索和利用),并在网络的深度和宽度上保持平衡; 2. 设计的网络结构,在分类任务和目标检测任务上,
当人工设计的神经网络结构在各项任务上都取得了很好的成绩之后,人类开始思考如何自动设计网络结构。
4月29日晚,国际万维网顶会WWW-2022(The Web Conference,简称WWW)公布了本届会议的最佳论文。以北京大学计算机学院崔斌教授博士生张文涛为第一作者的论文“可扩展的图神经结构搜索系统 (PaSca: a Graph Neural Architecture Search System under the Scalable Paradigm)”斩获大会唯一的最佳学生论文奖(Best Student Paper Award)。
常建龙,师从潘春洪和向世明研究员,中国科学院自动化研究所在读博士生,主要研究方向为基于关系的深度学习,包括自动机器学习、网络压缩、深度图网络、深度无监督学习等等。目前已在IEEE T-PAMI(2篇), NeurIPS和ICCV (Oral) 等机器学习与计算机视觉顶级期刊和会议发表学术论文。
Transformer在CV领域得到广泛关注,从Vision Transformer到层出不穷的变种,不断地刷新了各项任务地榜单。在CV领域的应用,Transformer在未来有可能替代CNN吗?
作者:Kissrabbit (知乎同名) 方向:目标检测与人体动作行为分析 哈尔滨工业大学在读博士 最近,Scaled-YOLOv4的作者(也是后来的YOLOR的作者)和YOLOv4的作者AB大佬再次联手推出了YOLOv7,目前来看,这一版的YOLOv7是一个比较正统的YOLO续作,毕竟有AB大佬在,得到了过YOLO原作的认可。 网上已经有了很多文章去从各个方面来测试YOLOv7,但关于YOLOv7到底长什么样,似乎还没有多少人做出介绍。由于YOLOv7再一次平衡好了参数量、计算量和性能之间的矛盾,所以,笔
最近放出来了一篇CVPR2019论文,文章提出了一种新的高效卷积方式:HetConv,在CIFAR10、ImageNet等数据集超过了标准卷积以及DW+PW的高效卷积组合形式,取得了更高的分类性能。
本文介绍如何从CKPT模型文件中提取网络结构图并实现可视化。
LeNet-5是由LeCun 提出的一种用于识别手写数字和机器印刷字符的卷积神经网络(Convolutional Nerual Network,CNN)[1],其命名来源于作者LeCun的名字,5则是其研究成果的代号,在LeNet-5之前还有LeNet-4和LeNet-1鲜为人知。LeNet-5阐述了图像中像素特征之间的相关性能够由参数共享的卷积操作所提取,同时使用卷积、下采样(池化)和非线性映射这样的组合结构,是当前流行的大多数深度图像识别网络的基础。
近年来,视频内容几乎占据了所有互联网流量的80%。因此,为视频存储和传输设计高效的视频压缩方法至关重要。传统的视频编码标准,如 AVC, HEVC 和 VVC 等,都是在过去几十年中基于块分割、线性离散余弦变换(DCT)等手工设计模块搭建的。最近,研究者对基于深度学习的视频压缩方法越来越感兴趣。现有方法通常采用深度神经网络实现运动补偿和残差/条件编码,并优化端到端压缩框架中的所有模块,展现出了有希望的结果。
AI 科技评论按,本文作者刘环宇,系浙江大学控制科学与工程自动化系硕士,旷视科技研究院算法研究员,全景分割算法 OANet 第一作者,研究方向包括全景分割、语义分割等。同时,他也是 2018 COCO + Mapillary 全景分割比赛旷视 Detection 组冠军团队成员。
身为一枚猿猿,大环境下,我们能做的,只有努力提升自己技能以及知识领域广度。
随着业务的增加和计算机技术的发展,接入局域网的用户将越来越多,终端和工作站的处理能力越来越强,以及图形图像和多媒体的应用越来越广泛,要求每个用户实际可用带宽很高才能使网络通信流畅,网络将成为提供多种业务的统一网络平台,并应该为不同的业务提供服务质量保证(QoS)。因此,设计方案时充分了考虑将来业务量的增大,保证当前及今后一定时期内网络的高效与通畅。
作者 | 王井东 整理 | 阿司匹林 出品 | 人工智能头条(公众号ID:AI_Thinker) 卷积神经网络在近几年获得了跨越式的发展,虽然它们在诸如图像识别任务上的效果越来越好,但是随之而来的则是模型复杂度的不断提升。越来越深、越来越复杂的卷积神经网络需要大量存储与计算资源,因此设计高效的卷积神经网络是非常重要和基础的问题,而消除卷积的冗余性是该问题主要的解决方案之一。 如何消除消除卷积的冗余性?我们邀请到了微软亚洲研究院视觉计算组资深研究员王井东博士,为大家讲解发表在 ICCV 2017 和 CVP
人工智能的浪潮正席卷全球,诸多词汇时刻萦绕在我们的耳边,如人工智能,机器学习,深度学习等。
Resnet即就是残差网络,本文主要是对于resnet给出的网络结构图进行简单解释。
例如我们想将训练好的Inception V1现成模型,从TensorFlow转换为TensorRT, 我们可以从(TensorBoard)显示的结构图的最发现找到输入节点,(从该节点的右上角信息)中,
这是专栏《图像分割模型》的第8篇文章。在这里,我们将共同探索解决分割问题的主流网络结构和设计思想。
一、结构化布线系统 1.结构化综合布线系统需要满足的要求: 标准化、实用性、先进性、开放性、结构化、层次化。 2.结构化布线系统有6个子系统 工作区子系统、水平布线子系统、 干线子系统、设备
【GiantPandaCV导语】这篇论文是FAIR的Ilija Radosavovic组(并不是何恺明)做的一个NAS工作。传统的NAS是固定网络设计空间,搜索参数到最好的模型。「而该工作是结合了部分手工设计和网络搜索,得到最优的网络设计空间」,再一步步缩小,「得到一组最优模型。」
本文转自知乎,原文 https://zhuanlan.zhihu.com/p/39250908
12月15日,由腾讯云主办的首届“腾讯云+社区开发者大会”在北京举行。本届大会以“新趋势•新技术•新应用”为主题,汇聚了超40位技术专家,共同探索人工智能、大数据、物联网、小程序、运维开发等热门技术的最新发展成果,吸引超过1000名开发者的参与。以下是大数据AI分会场的演讲内容,稍作整理,分享给大家。
机器之心专栏 北京大学DAIR实验室、腾讯机器学习平台部Angel Graph团队 来自北京大学 DAIR 实验室与腾讯机器学习平台部 Angel Graph 团队共同完成的研究斩获WWW 2022 唯一最佳学生论文奖(Best Student Paper Award)。 4 月 29 日晚,国际万维网顶会 WWW-2022(The Web Conference,简称 WWW)公布了本届会议的最佳论文。以北京大学计算机学院崔斌教授博士生张文涛为第一作者的论文 《可扩展的图神经结构搜索系统 (PaSca: a
今年年初的时候,Szegedy写了GoogLeNet的第三篇续作,如下: [v4] Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,top5 error 3.08% Szegedy读了此论文后,蹦出了结合GoogLeNet与Residual Connections的奇思妙想,于是就有了上面那篇论文,主要贡献如下: 1、在Inception v3的基础上发明了Inception v4,v4比v3
本文针对 ILSVRC14 提出了一个名叫 Inception 的深度卷积网络架构,主要是通过充分利用网络内的计算资源来提升网络性能,具体是通过在增加网络的宽度和深度同时控制住计算量来实现的。小尺寸滤波器组合 + 1*1滤波器降维
一、简介 随着网络的发展,多模态数据(文本、图片、语单、视频等)越来越多,如何从大数据中挖掘出知识显得越来越重要。网络存储的数据种类繁多,有文本、图片、语音、视频等,如何将这些信息关联起来,更好地理解数据并从中挖掘知识非常关键。其中,图片与文本的匹配模型,研究得越来越多[1-4]。图文匹配模型对于其它多模态领域(包括:Image caption、Image synthesis、VQA等,图1)有着非常大的帮助,因为它可以计算图片与文本之间的相似度。 图1【图文匹配模型对于多模态领域的重要
在很多大型企业中都是拥有着非常多的计算机设备的,相信在企业中工作过的人们都是知道企业中的很多计算机都是互连在一起的,计算机共处于一个局域网中能够更加方便地不同计算机之间的传输,计算机互连之后还可以进行很多更加方便的操作,让企业内部的联系更加紧密。那么一般计算机之间都是通过什么方式来连接在一起的呢?这个时候就需要使用到网络拓扑结构,使用不同拓扑结构的就会形成网络拓扑图,那么网络拓扑图是什么意思?网络拓扑图有哪些分类?下面小编就为大家来详细介绍一下。
领取专属 10元无门槛券
手把手带您无忧上云