Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。...qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列“堆叠”为一个层次化的...:绘制堆积图 pandas.DataFrame.plot.bar:绘制柱状图 pandas.DataFrame.plot.barh:绘制水平条形图 pandas.DataFrame.plot.box:绘制箱线图...pandas.DataFrame.plot.density:绘制核密度估计图 pandas.DataFrame.plot.hexbin:绘制六边形分箱图 pandas.DataFrame.plot.hist...:绘制直方图 pandas.DataFrame.plot.line:绘制线型图 pandas.DataFrame.plot.pie:绘制饼图 pandas.DataFrame.plot.scatter:
它创建一个新的DataFrame,其列是在步骤 1 中标识的键的标签,然后是两个对象中的所有非键标签。 它与两个DataFrame对象的键列中的值匹配。...库还提供了.join()方法,该方法可用于使用两个DataFrame对象的索引标签(而不是列中的值)执行连接。...同样,在枢轴在索引上保留相同数量的级别的情况下,堆叠和非堆叠总是会增加其中一个轴(用于堆叠的列和用于堆叠的行)的索引上的级别,而会降低另一轴上的级别。...像这样的序列的一个例子是给定月份而不是特定时间的证券的平均值。 当我们将时间序列重新采样到另一个频率时,这变得非常有用。...在本章之前,我们花费了大部分时间来学习 Pandas 的功能,并且在许多情况下,使用的是设计用来演示概念的数据,而不是使用实际数据。
纯Python实现histogram 当准备用纯Python来绘制直方图的时候,最简单的想法就是将每个值出现的次数以报告形式展示。...,而值为所有数值出现的频率次数。...实际上,这个功能可以用一个Python的标准库 collection.Counter 类来完成,它兼容Pyhont 字典并覆盖了字典的 .update() 方法。...而上面纯Python实现版本只是单纯的频数统计,不是真正意义上的直方图。 因此,我们从上面实现的简单直方图继续往下进行升级。...更多请查阅np.digitize() 数据存在于在Pandas的Series和DataFrame对象中 Pandas方法,比如, Series.plot.hist(),DataFrame.plot.hist
对于定量数据,欲了解其分布形式是对称的还是非对称的,发现某些特大或特小的可疑值,可通过绘制频率分布表、绘制频率分布直方 图、绘制茎叶图进行直观地分析;对于定性分类数据,可用饼图和条形图直观地显示分布情况...5) 计划完成程度相对数:是某一时期实际完成数与计划数的对比,用以说明计划完成 程度。 6) 动态相对数:将同一现象在不同时期的指标数值进行对比,用以说明发展方向和变 化的速度。...3.2.5、贡献度分析 贡献度分析又称帕累托分析,它的原理是帕累托法则,又称20/80定律。同样的投入放 在不同的地方会产生不同的效益。...Series对象的方法而出现的,因此命令格式为 D.cumsum(),而rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,因此,它们的使用格式为pd.rolling_mean...D为Pandas的DataFrame或Series,代表着均值数据列,而error则 是误差列,此命令在y轴方向画出误差棒图;类似地,如果设置参数xerr = error,则在x轴 方向画出误差棒图。
1 一个警告 Pandas中有一个警告,很有意思,并且出现频率很高,它就是 SettingWithCopyWarning, 既然是个警告,那么我们是不是可以忽略呢。就像标题说的那样,万万不可。...造一组数据,让它出现这个warning In [2]: df = pd.DataFrame({'name':['gz','lg','zx'],'score':[80,70,90]})...5 配置警告 Pandas 的 mode.chained_assignment 选项可以采用以下几个值之一: 'raise' - 抛出异常(exception)而不是警告 'warn' - 生成警告(默认...实际上,视图在 NumPy 中很有用,因为它们能够可预测地返回。由于 NumPy 数组是单一类型的,因此 Pandas 尝试使用最合适的 dtype 来最小化内存处理需求。...因此,包含单个 dtype 的 DataFrame 切片可以作为单个 NumPy 数组的视图返回,这是一种高效处理方法。但是,多类型的切片不能以相同的方式存储在 NumPy 中。
来源:早起Python 本文为你介绍Pandas基础、Pandas数据处理、金融数据处理等方面的一些习题。 Pandas 是基于 NumPy 的一种数据处理工具,该工具为了解决数据分析任务而创建。...在深度和广度上,都相较之前的Pandas习题系列有了很大的提升。...np.median(df['salary']) 32.绘制薪资水平频率分布直方图 #执行两次 df.salary.plot(kind='hist') 33.绘制薪资水平密度曲线 df.salary.plot...temp = pd.DataFrame(columns = data.columns.to_list()) 62.打印所有换手率不是数字的行 for i in range(len(data)):...isin(df['col2'])] 90.提取第一列和第二列出现频率最高的三个数字 temp = df['col1'].append(df['col2']) temp.value_counts().index
Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。...(以单独列名作为columns的参数),也可以进行多重排序(columns的参数为一个列名的List,列名的出现顺序决定排序中的优先级),在多重排序中ascending参数也为一个List,分别与columns...df.groupby(['A','B']).sum()##按照A、B两列的值分组求和 对应R函数: tapply() 在实际应用中,先定义groups,然后再对不同的指标指定不同计算方式。...时间序列在Pandas中就是以Timestamp为索引的Series。...画图 Pandas也支持一定的绘图功能,需要安装matplot模块。 比如前面创建的时间序列,通过plot()就可以绘制出折线图,也可以使用hist()命令绘制频率分布的直方图。
一、基础绘图:plot Series和DataFrame上的plot方法只是plt.plot()的简单包装,这里我们用一段实际数据来进行可视化展示: import pandas as pd import...包装后的kind关键字我们梳理一下底图种类: 也可以使用DataFrame.plot方法创建这些其他绘图而不是提供kind关键字参数。...这里我们不用上一个数据集,不好展示,换用一个数据集: df_example[['出现频次','需求总数']].plot.hexbin(x='出现频次',y='需求总数',gridsize=25) 效果不是很好...(x="a", y="b", gridsize=25); 关键字参数gridsize:它控制x方向六边形的数量,默认值为100。...在本例中,位置由a列和b列给出,而值由z列给出。这些箱子通过NumPy的max函数进行聚合。
一个有用的技巧是使用生成器并使用Ctrl + Enter而不是Shift + Enter来迭代地查看同一个单元格中的不同样本。...因为所有的数据集都是不同的。然而,有一个神奇的 pandas_profiling 包使得这种逻辑毫无意义。这个包实际上自动化了数据探索和数据质量评估步骤!看一看: ?...链接方法允许你把你的想法“翻译”成实际的操作。...变量是根据系数(或变量重要性)进行排序的,彩色条允许我们快速找到最重要的变量。Pclass列有最大的(负)系数,它的绝对值是第二大的系数Embarked_Q的两倍。...6 tqdm 在处理大型数据集时,数据操作需要时间。使用tqdm来跟踪你的代码是否正在实际运行,以及它需要多长时间,而不是在你的Jupyter Notebook无聊的等待,而不知道发生了什么。
对象中与另一个 DataFrame 中的键不匹配的行将在另一个 DataFrame 的列中出现 NA 值。...在索引上合并 在某些情况下,DataFrame 中的合并键会在其索引(行标签)中找到。...在此格式中,单个值由表中的一行表示,而不是每行多个值。...(表示时间间隔而不是时间点),在 Ch 11: Time Series 中更详细地讨论,将year和quarter列组合起来,将索引设置为每个季度末的datetime值: In [147]: periods...ax.annotate方法可以在指定的 x 和 y 坐标处绘制标签。我们使用set_xlim和set_ylim方法手动设置绘图的起始和结束边界,而不是使用 matplotlib 的默认值。
这是因为df2 = df1并不是生成一个df1的复制品并把它赋值给df2,而是设定一个指向df1的指针。所以只要是针对df2的改变,也会相应地作用在df1上。...比如说,如果你想把“c”列的值近似取整,那么请用round(df[‘c’], 0)或df['c'],round(0)而不是上文的apply函数。...你想要检查下“c”列中出现的值以及每个值所出现的频率,可以使用: df['c'].value_counts( 下面是一些有用的小技巧/参数: normalize = True:查看每个值出现的频率而不是频次数...dropna = False: 把缺失值也保留在这次统计中。 sort = False: 将数据按照值来排序而不是按照出现次数排序。...另一个技巧是用来处理整数值和缺失值混淆在一起的情况。如果一列含有缺失值和整数值,那么这一列的数据类型会变成float而不是int。
Pandas是一个在Python中广泛应用的数据分析包。市面上有很多关于Pandas的经典教程,但本文介绍几个隐藏的炫酷小技巧,我相信这些会对你有所帮助。...比如说,如果你想把“c”列的值近似取整,那么请用round(df[‘c’], 0)或df[ c ],round(0)而不是上文的apply函数。...你想要检查下“c”列中出现的值以及每个值所出现的频率,可以使用: df[ c ].value_counts( 下面是一些有用的小技巧/参数: normalize = True:查看每个值出现的频率而不是频次数...dropna = False: 把缺失值也保留在这次统计中。 sort = False: 将数据按照值来排序而不是按照出现次数排序。...另一个技巧是用来处理整数值和缺失值混淆在一起的情况。如果一列含有缺失值和整数值,那么这一列的数据类型会变成float而不是int。
线型图还可以加上一些标记(marker),以强调实际的数据点。由于matplotlib创建的是连续的线型图(点与点之间插值),因此有时可能不太容易看出真实数据点的位置。...还可以将其写成更为明确的形式: ? 在线型图中,非实际数据点默认是按线性方式插值的。可以通过drawstyle选项修改: ? ?...9、pandas中的绘图函数 不难看出,matplotlib实际上是一种比较低级的工具。...=0.5) 注意: 柱状图有一个非常不错的用法:利用value_counts图形化显示Series中各值的出现频率,比如s.value_counts().plot(kind=‘bar‘)。...12、直方图和密度图 直方图(histogram)是一种可以对值频率进行离散化显示的柱状图。数据点被拆分到离散的、间隔均匀的面元中,绘制的是各面元中数据点的数量。
而(%matplotlib inline)则是直接显示在编程界面,不重新跳出做图框。 如果我们没有指定在哪个ax上进行作图,matplotlib会默认选择最后一个(如果没有则创建一个)上进行绘制。...06|Pandas作图: matplotlib是一种比较低级的工具,要组装一张图表,需要用到它的各种组件才可以,包括图表类型(线型图、柱状图、盒形图、散布图、等值线图等)、图例、标题、刻度标签以及其他注释信息...这是因为制作一张完整的图表都需要用到这些,但是matplotlib要实现这种功能需要很多行代码,而pandas可能只需要几行代码就可以搞定。...线型图:Series和DataFrame都有自己的plot方法,plot默认创建的是线形图,Series.plot()和DataFrame.plot()。...还可以利用s.value_counts().plot(kind="bar")来图形化显示Series中各值出现的频率。 直方图:是一种可以对值频率离散化显示的柱状图。
字典是将任意键映射到一组任意值的结构,而Series对象是将类型化键映射到一组类型化值的结构。...可以看作一种通用的NumPy 二维数组,它的行与列都可以通过索引获取。...DataFrame是特殊的字典 与Series 类似,我们也可以把DataFrame 看成一种特殊的字典。字典是一个键映射一个值,而DataFrame 是一列映射一个Series 的数据。...0 0 1 1 2 2 2 4 即使字典中有些键不存在,Pandas 也会用缺失值NaN(不是数字,not a number)来表示: pd.DataFrame([{'a': 1, 'b': 2},...DataFrame 和数组之间进行索引共享时更加安全,尤其是可以避免因修改索引时粗心大意而导致的副作用。
而对于多变量时间序列,则可以使用带有多列的二维 Pandas DataFrame。然而,对于带有概率预测的时间序列,在每个周期都有多个值的情况下,情况又如何呢?...在图(A)中,第一周期的值为 [10,15,18]。这不是一个单一的值,而是一个值列表。例如,未来一周的概率预测值可以是 5%、50% 和 95% 量级的三个值。习惯上称为 "样本"。...比如一周内商店的概率预测值,无法存储在二维Pandas数据框中,可以将数据输出到Numpy数组中。...() 作为一般转换工具,该类需要时间序列的基本元素,如起始时间、值和周期频率。...它拥有用户友好的界面和交互式plotly风格的输出,分析师几乎不需要人工干预即可生成预测结果。Prophet因其灵活的趋势建模功能和内置的不确定性估计而深受欢迎。
尽管与DataFrame相比,它的实际重要性正在减弱(你完全可以在不知道Series是什么的情况下解决很多实际问题),但如果不先学习Series和Index,可能很难理解DataFrame的工作原理。...在Pandas中,它被称为MultiIndex(第4部分),索引内的每一列都被称为level。 索引的另一个重要特性是它是不可改变的。与DataFrame中的普通列相比,你不能就地修改它。...>>> len(s.compare(s)) == 0 True 这里,比较函数返回一个差异列表(实际上是一个DataFrame),而array_equal直接返回一个布尔值。...std,样本标准差; var,无偏方差; sem,无偏标准误差的平均值; quantile,样本四分位数(s.quantile(0.5) ≈ s.median()); mode,即出现频率最高的值;...这对于groupby来说是不需要的。实际上,如果组内元素不是连续存储的,它也同样能工作,所以它更接近collections.defaultdict而不是itertools.groupby。
类似于head,我们只需要调用tail函数并传入我们想获取的行数。需要注意的是,Pandas不是从dataframe的结尾处开始倒着输出数据,而是按照它们在dataframe中固有的顺序输出给你。...注意到当我们提取了一列,Pandas将返回一个series,而不是一个dataframe。是否还记得,你可以将dataframe视作series的字典。...好,我们也可以在Pandas中做同样的事。 ? 上述代码将范围一个布尔值的dataframe,其中,如果9、10月的降雨量低于1000毫米,则对应的布尔值为‘True’,反之,则为’False’。...这将会给’water_year’一个新的索引值。注意到列名虽然只有一个元素,却实际上需要包含于一个列表中。如果你想要多个索引,你可以简单地在列表中增加另一个列名。 ?...上述代码为我们创建了如下的dataframe,我们将对它进行pivot操作。 ? pivot实际上是在本文中我们已经见过的操作的组合。
领取专属 10元无门槛券
手把手带您无忧上云