首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    RavenDB文档建模--琐碎的注意事项--缓存查询属性

    缓存查询属性是我们在实际开发中会遇到的,什么是缓存查询属性呢?举个例子来说,在电子商城的订单系统中每个账户都有自己的订单数据,有时用户需要查看自己截止到目前所订单的数量,那么这个账户的订单数量可以被视为 查询属性,因为从众多的订单中统计出某个账户的订单数量是一件会消耗很多资源的命令,因此会将这个订单数量存储在缓存中(例如存储在RavenDB中),在后续查询中我们不需要再次从数据库中查询,只需要在缓存冲查询即可,这就叫做 缓存查询属性。 缓存查询属性的行为开起来很常见也很有意义,但是着是一个不良的行为。为什么这么说呢?首先在大部分领域中这种类似的属性并不是客户必须有的部分(可有可无),也不是客户文档必须包含的部分,其次,为了保证这个属性会在相关内容变更(例如订单删除和新增)时也跟着更改,我们就需要在相关内容发生变化时也去改变它的内容,等于说我们要对数据库多进行N次的操作,然后将更新的数据在存入缓存中,这样就会增大失败的概率,接着,我在进行开发设计前还需要考虑哪些操作会改变查询属性,如果是比较简单的项目还好,那如果是大型项目呢?里面的操作错综复杂,如何保证覆盖所有的操作? 缓存查询属性这个问题其实是一个业务和成本方面的问题,在大多数情况下我们只是想在页面中展示这个值,并且要从关系型数据库中查询出这个值的话可能会很昂贵,因此很多人会将这个值直接放在缓存中。在 RavenDB 中我们可以使用 MapReduce 聚合操作来处理,我们根本就不需要缓存这种属性,也减少了成本,MapReduce的使用因为是一个很大的模块,因此我将放在后面专门开始一个专题来讲解。在解决完缓存查询属性的问题后,下一步我们该考虑如何处理并发的问题和并发问题对建模的影响,这个问题我将放在下一篇文章讲解。

    02

    海量数据的存储与访问瓶颈解决方案-数据切分

    在当今这个时代,人们对互联网的依赖程度非常高,也因此产生了大量的数据,企业视这些数据为瑰宝。而这些被视为瑰宝的数据为我们的系统带来了很大的烦恼。这些海量数据的存储与访问成为了系统设计与使用的瓶颈,而这些数据往往存储在数据库中,传统的数据库存在着先天的不足,即单机(单库)性能瓶颈,并且扩展起来非常的困难。在当今的这个大数据时代,我们急需解决这个问题。如果单机数据库易于扩展,数据可切分,就可以避免这些问题,但是当前的这些数据库厂商,包括开源的数据库MySQL在内,提供这些服务都是需要收费的,所以我们转向一些第三方的软件,使用这些软件做数据的切分,将原本在一台数据库上的数据,分散到多台数据库当中,降低每一个单体数据库的负载。那么我们如何做数据切分呢?

    06

    微服务开发中的数据架构设计前言微服务架构中的多层数据架构设计数据架构设计中的要点

    本文来自作者 陈伟荣 在 GitChat 分享的文章【微服务开发中的数据架构设计】 前言 微服务是当前非常流行的技术框架,通过服务的小型化、原子化以及分布式架构的弹性伸缩和高可用性,可以实现业务之间的松耦合、业务的灵活调整组合以及系统的高可用性。为业务创新和业务持续提供了一个良好的基础平台。本文分享在这种技术架构下的数据架构的设计思想以及设计要点,本文包括下面若干内容。 微服务技术框架中的多层数据架构设计 数据架构设计中的要点 要点1:数据易用性 要点2:主、副数据及数据解耦 要点3:分库分表 要点4

    08

    一文搞定MySQL的分区技术、NoSQL、NewSQL、基于MySQL的分表分库

    ◆ 分表分库 上文讲到,查询分离的方案存在三大不足,其中一个就是:当主数据量越来越大时,写操作会越来越缓慢。这个问题该如何解决呢?可以考虑分表分库。 这里先介绍一下真实的业务场景,而后依次介绍拆分存储时如何进行技术选型、分表分库的实现思路是什么,以及分表分库存在哪些不足。 接下来进入业务场景介绍。 ◆ 业务场景:亿级订单数据如何实现快速读写 这次项目的对象是电商系统。该系统中大数据量的实体有两个:用户和订单。每个实体涵盖的数据量见表3-1。 表3-1 数据量 某天,领导召集IT部门人员开会,说:“根据市场

    02
    领券