如何在tensorflow中获得协方差矩阵?就像numpy中的numpy.cov()。例如,我想得到张量A的协方差矩阵,现在我必须使用numpy A = sess.run(model.A, feed)
cov = np.cov(np.transpose(A)) 有没有办法通过它不同于问题how to compute covariance in tensorflow,他们的问题是计算两个向量的协方差,而我的</e
我正在跟踪这个的帖子,它是从比戈托论坛# where output.shape = [1, 2] and target.shape =[1, 2]def my_loss(output, target):
loss = torch.tensor(np.linalg.norm(output.detachRuntimeError: element 0 of tensors does not require grad and does not have a