现有的人脸识别场景中,极易用照片、视频等方式复制人脸进而攻击,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁,考虑到一旦虚假人脸攻击成功,极有可能对用户造成重大损失,因此势必需要为现有的人脸识别系统开发可靠...为了确保你是“活的你”,人脸活体检测通常包含几个鉴别步骤,比如眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸识别系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;或者嘴部张合判别...3.活体算法检测:判断用户是否为正常操作,通过指定用户做随机动作(摇头、点头、凝视、眨眼、上下移动手机),防止视频攻击、非正常动作的攻击。...人脸活体检测通常包含的几个鉴别步骤,比如:1. 眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸活体检测系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;2....基于人脸识别场景中的防欺诈解决方案,人脸活体检测技术可以有效阻挡PS换脸、视频、三维人脸模型、高清人像照片等各种不同类型的攻击。
最近挺多人问我,关于视频号的事情,在这里写一下统一解答。关注本号回复邀请码,可以获得视频号专属邀请码喔,在提交影响力证明时可以附上该邀请码,可获得加速审核的资格。...开始的时候是通过邮箱申请内测,由于邮箱审核过慢,为了提升效率,现在可以通过扫描二维码,进行在线申请,通常会在5个工作日内审核完成。如果申请通过,你将收到通过邮件,按照邮件指引操作即可。...关于视频号的问题解答 1、什么是视频号? 微信视频号与订阅号、服务号不同,是一个全新的内容记录与创作平台,是一个了解他人、了解世界的窗口。 2、视频号可以发布什么内容?...视频号内容以图片和视频为主,可以发布长度不超过1分钟的视频,或者不超过9张的图片,还能带上文字和公众号文章链接。...视频号支持点赞、评论进行互动,也可以转发到朋友圈、聊天场景,与好友分享 3、视频号和公众号一样需要登录PC端后台吗? 微信视频号不需要PC端后台,可以直接在手机上发布。 4、视频号在哪里?
那么能不能用AI 来鉴别假新闻呢?又该如何鉴别呢?...麻省理工学院计算机科学与人工智能实验室(CSAIL)在其官网发布了一则新闻,宣称该实验室与卡塔尔计算研究所(Qatar Computing Research Institute)的研究人员合作,已经研究出一种可以鉴别信息来源准确性和个人政治偏见的...而Facebooky也一度深陷假新闻的泥淖,已经开始尝试使用“识别虚假新闻”的人工智能工具,并于近期收购了总部位于伦敦的初创公司Bloomsbury AI,以帮助其鉴别消除假新闻。...不过,无论最终鉴别假新闻和个人偏见的解决方案是AI系统还是人工,抑或两者兼而有之,假新闻被彻底消除的那一天都不会立刻到来。
在此前的文章中,我们已经为大家介绍过EasyCVR平台的自动转码功能,该功能具体是指可以在不改变摄像机设置的情况下实现视频流转码播放,如果摄像机的视频编码格式是H.265,利用转码功能可以转换为H.264...在我们很多的项目中,用户对视频流的转码需求也很多(H.265视频流转H.264视频流)。...除此之外,EasyCVR平台也支持通过接口配置通道转码,具体可以查看这篇文章:《视频融合平台EasyCVR如何通过接口配置通道转码?》。...EasyCVR视频融合平台基于云边端协同架构,能支持海量视频的轻量化接入与汇聚管理,借助大数据分析的决策判断,为摄像头、网络存储设备、智能终端、视频监控平台等提供一体化的视频接入、分发、存储、处理等能力...近期我们正在积极研发基于AI视频智能分析的云边端融合智能协同平台。
与之前很多其他工作不同,针对人脸修复任务,这篇论文的作者同时使用了两个鉴别器来构建整个模型,因此不论是局部图像还是整个图像,看上去都更加逼真。 2. 方法 2.1 模型结构 ?...局部鉴别器被用来判别图像缺失区域中合成的图像补丁是否真实。整体鉴别器则用来判别整张图像的真实性。这两个鉴别器的架构相似于论文《用深度卷积生成对抗网络来进行非监督表征学习》中的所述架构。...两个鉴别器的损失函数的不同之处在于:局部鉴别器的损失函数 (L_a1) 仅仅反向传播图像缺失区域的损失梯度,而整体鉴别器的损失函数 (L_a2) 反向传播整个图像的损失梯度。...结论 这个基于生成对抗网络的模型具有两个鉴别器和一个语义正则化网络,能够处理人脸修复任务。它能够在随机噪声中成功地合成缺失的人脸部分。 6....改进建议 这个模型一个局限是并不能处理一些未对齐的人脸,可以增加一个面部变形的网络来将输入的人脸规范化。
本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 在EEG的信号处理过程中,通过独立成分分析(ICA)去除各种干扰信号应该是最麻烦的步骤,因为它需要操作者的主观判断,需要一定的经验才能准确无误地鉴别干扰信号...在本文中,笔者针对心电干扰信号,简述其脑地形图、功率谱、时域信号的特征(注:这里所说的都是脑电信号ICA之后的心电成分),以帮助新手朋友快速鉴别这种干扰信号。
存储视频最低15天 4.视频连线模块:支持多路视频音频连线直播。
作者 | 东田应子 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第三篇文章,介绍人脸表征相关算法和论文综述。...在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法...一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别...在该人脸识别模型中分为四个阶段:人脸检测 => 人脸对齐 => 人脸表征 => 人脸分类,在LFW数据集中可以达到97.00%的准确率。...,即:识别、验证、搜索等问题都可以放到特征空间里做,需要专注解决的仅仅是如何将人脸更好的映射到特征空间。
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,...把处理的图片逐帧绘制给用户,用户看到的效果就是视频的人脸检测。...视频的人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor...x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸...cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测
线下技术沙龙及大会的门票、腾讯云新品内测试用体验、与开源项目大牛零距离接触、社区成长值激励、云服务器 CVM 代金券(有效期为3个月,使用条件:限新购、续费,适用付费类型:预付费) 该计划的扶持期限为一年,从扶持申请通过之日开始计算...扶持资源会在审核通过后发放到你的腾讯云账户 整个计划的操作流程也十分简单: 注册/登录腾讯云账号-申请扶持计划-审核通过后可获取扶持资源包。
前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧。...视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档...技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。....waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() 那么,OpenCV和Dlib的视频识别对比...,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;
作者 | 别看我只是一只洋 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第四篇文章,接着第三篇文章,继续介绍人脸表征相关算法和论文综述。...在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法...一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别...CosFace使用mtcnn进行人脸检测与对齐,人脸表征训练模型使用基于residual units 64层卷积网络的Sphere Face,在5M的训练集上训练,在LFW数据集上测试,精度达到99.73%...三、总结 本期文章主要介绍人脸表征相关算法和论文综述,人脸检测、对齐、特征提取等这些操作都可以在静态数据中完成,下一期将给大家介绍在视频数据中进行人脸识别的另一个重要的算法,视频人脸跟踪的概念与方法。
往期目录 视频人脸检测——Dlib版(六) OpenCV添加中文(五) 图片人脸检测——Dlib版(四) 视频人脸检测——OpenCV版(三) 图片人脸检测——OpenCV版(二) OpenCV...视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档...技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。....waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() 那么,OpenCV和Dlib的视频识别对比...,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户...,用户看到的效果就是视频的人脸检测。...视频的人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor...x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸...cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测
包治百病 口红续命 双十一已过半,熬到凌晨2点才睡的你 看着已清空的购物车 是否觉得自己的美貌又增添了几分 然鹅,好看的皮囊千篇一律 有趣的灵魂万里挑一 如何在双11快速鉴别身边“有趣的灵魂”?
-- 视频摄像头 --> 人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile();...Mat video 中 HighGui.imshow("本地视频识别人脸", getFace(video));//3 显示图像 index=HighGui.waitKey...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
如何鉴别? 1、分为boolean布尔、number数字、string字符串、null空类型、undefined未定义。...值为由单引号或双引号包围的单个字符或连续字符(JavaScript 不区分字符类型) null空类型,该原始类型只有一个值:null undefined未定义,该原始类型只有一个值:undefined 2、鉴别方法...比如toLowerCase()、charAt()、subString()、toString(16) {将数字转换为16进制数} 以上就是javascript原始类型的介绍及鉴别,希望对大家有所帮助。
如何判别一个MT4软件是否是盗版?今天就带你们辨别真假MT4. MT4的优势 1.强大的工作表现 MT4强大的工作表现,这一点是毋庸置疑的。MT4自2005年7月1日推出以来,就不断的获得市场的认可。
对于还没有接入短信平台的公司,下面给您分享如何申请接入。 申请渠道 申请渠道一:找电信运营商申请,但是必须得分别找移动、联通、电信单独申请,并且他们的接口协议不统一,操作起来不方便。...申请渠道二:找第三方短信平台申请,由短信平台去对接三大运营商。接口统一、并且没有使用套餐限制。更加省时、省心、省力。我们只需要提供申请材料给短信公司即可。...申请材料 申请短信平台必须要的材料有:营业执照,短信内容说明文档;对于短信签名与公司名称不相符的,需要提供产品证书、商标证书、域名证书等相关证明材料。...申请周期 视发送短信内容的情况(验证短信、营销短信、通知短信),申请周期一般在1~3个工作日,对于有特殊短信号码要求的,申请周期需要更久。...原文阅读:《106短信平台如何申请》_漫道短信平台
、合成视频是新型科技产品带来的新挑战。...从生成足以以假乱真的名人不雅视频开始,很多使用者将这个“换脸神器”当成了视频造假工具,并通过社交网络将虚假信息(disinformation)传播到全世界。...以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频的真伪。...与此同时,换脸鉴别模型还需要对目前不存在、但未来可能出现的换脸技术也具有判别力,如何去预测未来换脸技术的发展方向,提前布防,也是重要课题。...Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。
领取专属 10元无门槛券
手把手带您无忧上云