首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度 | 微软如何通过人工智能将你的手机变成植物百科全书

你是否遇到过这种情况?——外出与小孩散步,TA发现一朵很漂亮的花,跑过来问你是什么,但是你突然愣住了—因为你并不知道它是什么花。 目前世界上至少存在250000种花,即便是经验丰富的植物学者也很难全部认识它们。如果现在告诉你以后不用尴尬对小孩承认你并不知道它是什么花,不久之后你就能在无论什么时候都能马上认出任何一种花卉或者任何植物的品种,会不会很期待? 鉴于目前图像识别的强大能力以及使用智能手机随手拍照的便利,普通人通过使用工具也能轻松的识别各种花卉。这个工具叫做智能花卉识别系统(Smart Flower

07
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    云南大学联手腾实学院举办小程序开发挑战赛 探索校企协同育人新方式

    将花卉图片上传到小程序,就可以实现短期租花养花的需求,通过小程序控制浇灌系统和花盆的锁扣,还能实现远程养护和共享花卉的无人化销售;在野外,遇见了菌类,打开小程序,就能够进行有毒野生菌识别;打开云打印小程序,无需再排长长的队伍等待,能够直接远程打印……这些充满创意的小程序,都是云南大学学生结合校园学习生活的需要设计开发的。 11月28日,由云南大学联手腾讯教育共同举办的“小程序云开发挑战赛”总决赛在云南大学呈贡校区信息学院举行。云南大学本科生院副院长、创新创业学院院长杨舒然,云南大学信息学院党委书记赵征鹏,

    01

    专访 | 五一出游赏花,如何优雅地解释百度细粒度识别方案

    机器之心原创 作者:思源 近日,百度发布了用于花卉识别的移动端应用,这种基于全卷积注意力网络的细粒度识别方法在计算和准确度上都有非常强大的优势。在百度主任研发架构师陈凯和资深研发工程师胡翔宇的解释下,本文首先将介绍什么是细粒度识别,以及一般的细粒度识别方法,然后重点解析百度基于强化学习和全卷积注意力网络的细粒度识别模型。五一出游赏花,为女朋友解释解释细粒度识别也是极好的。 细粒度识别的概念其实非常简单,即模型需要识别非常精细的子类别。例如百度的花卉识别应用,模型不仅需要如一般识别问题那样检测出物体是不是

    03

    深度学习实战:AlexNet实现花图像分类 | 技术创作特训营第一期

    LeNet-5创造了卷积神经网络,但是LeNet-5并没有把CNN发扬光大,是CNN真正开始走进人们视野的是今天要介绍的——AlexNet网络。AlexNet网络源自于《ImageNet Classification with Deep Convolutional Neural Networks》这篇论文。作者是是Hinton率领的谷歌团队(Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton),Hinton在上一篇博客我们也曾介绍过,他是深度学习之父,在人工智能寒冬时期,Hinton一直就默默地坚持深度网络的方向,终于在2006年的《Science》上提出了DNN,为如今深度学习的繁荣奠定了基础。AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%error rate, 获得第二名的方法error rate 是 26.2%,可以说差距是非常的大了,足以说明这个网络在当时给学术界和工业界带来的冲击之大。

    05

    图像识别的原理、过程、应用前景,精华篇!

    图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人

    010
    领券