首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    腾讯会议如何保证语音质量?音频信号处理中有这些秘籍!

    导读 | 腾讯会议在去年年底推出,集结腾讯在AI、云计算、安全等方面的能力,全方位满足不同场景下的会议需求,在短短两个月内就突破千万日活大关。面对多样且复杂的场景,比如开会环境嘈杂、同一地点多设备接入、房间声学参数不理想等,腾讯会议如何通过对音频信号的处理持续保障高品质通话,提升沟通效率?本文是腾讯多媒体实验室音频技术专家李岳鹏在「腾讯技术开放日·云视频会议专场」的分享整理。 点击视频,查看直播回放 一、TRAE技术降噪增益揭秘 先简单讲一下VOIP中语音数据实时传输路径图,我们可以看到远端的数据通过

    092

    自适应采样非局部神经网络的点云鲁棒操作

    原始点云数据不可避免地从3D传感器或在重建算法中包含异常值。本文提出了一种用于鲁棒点云处理的新型端到端网络,称为 PointASNL,可以有效地处理带噪声的点云。我们方法中的关键部分是自适应采样(AS)模块。它首先从最远点采样点的周围对点的邻域加权,然后在整个点云中自适应的调整采样。AS模块不仅有益于点云的特征学习,而且缓解受异常值的影响。为了进一步捕捉邻域信息和长期依赖于采样点,我们从非局部操作的角度出发,提出了局部-非局部 (local-Nonlocal, L-NL) 模块。这种L-NL模块使学习过程对噪声不敏感。大量的实验证明了在分类和语义分割任务上,在合成数据,室内、室外数据,是否有噪声的数据,都有良好性能和鲁棒性。并且在有大量噪声的真实户外数据集SemanticKITTI上,明显优于以前的方法。代码发布在:

    01
    领券