首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大规模特征构建实践总结

    一般大公司的机器学习团队,才会尝试构建大规模机器学习模型,如果去看百度、头条、阿里等分享,都有提到过这类模型。当然,大家现在都在说深度学习,但在推荐、搜索的场景,据我所知,ROI并没有很高,大家还是参考wide&deep的套路做,其中的deep并不是很deep。而大规模模型,是非常通用的一套框架,这套模型的优点是一种非常容易加特征,所以本质是拼特征的质和量,比如百度、头条号称特征到千亿规模。可能有些朋友不太了解大规模特征是怎么来的,举个简单的例子,假设你有百万的商品,然后你有几百个用户侧的profile,二者做个交叉特征,很容易规模就过10亿。特征规模大了之后,需要PS才能训练,这块非常感谢腾讯开源了Angel,拯救了我们这种没有足够资源的小公司,我们的实践效果非常好。

    04
    领券