时间飞逝,7天的国庆小长假还没有玩儿够呢,就已经结束了!假期如龙卷风般走得飞快,但我还是不愿意相信这居然是真的!我爱我的祖国,我愿意天天给亲爱的祖国过生日!
在会上,腾讯云带来了在大数据与AI领域的最新研究成果,包括AutoNLP、AI换脸甄别技术AntiFakes、语言模型自学习工具、腾讯星图以及企业画像平台等系列重磅新品,并对AI和大数据产品进行了全线升级,致力于为用户带来更精细化的应用场景、更强大的技术能力以及更低的应用成本,全面降低企业AI技术的应用门槛。
自然语言处理可以说是人工智能领域内落地实践最广的技术之一,NLP产品的应用场景颇为广泛,只要有大量文本数据的场景,都可以使用我们的接口做智能分析,以下列举几个经典的使用场景。
腾讯云自然语言处理(Natural Language Process,NLP)深度整合了腾讯内部顶级的NLP技术,依托千亿级中文语料累积,提供18项智能文本处理能力,包括智能分词、实体识别、文本纠错、情感分析、文本分类、敏感审核、词向量、关键词提取、自动摘要、智能闲聊、百科知识图谱查询等。可广泛应用于用户评论情感分析、互联网文本敏感审核、资讯热点挖掘、电话投诉分析等场景,满足各行各业的文本智能需求。
今年4月,极光大数据发布了一份《2019年社交网络行业研究报告》,报告中详细展示了中国目前主要社交产品的用户数据和使用情况,包括了微信、微博、陌陌、百度贴吧、多闪等。报告显示,截止到19年2月,整个社交网络行业的用户规模为9.73亿,安装渗透率达到88.5%。
腾讯云自然语言处理(Natural Language Process,NLP)深度整合了腾讯内部顶级的 NLP 技术,依托千亿级中文语料累积,提供16项智能文本处理能力,包括智能分词、实体识别、文本纠错、情感分析、文本分类、词向量、关键词提取、自动摘要、智能闲聊、百科知识图谱查询等。可广泛应用于用户评论情感分析、资讯热点挖掘、电话投诉分析等场景,满足各行各业的文本智能需求。
自然语言处理(Natural Language Process,简称NLP),是一款基于人工智能技术,为各行各业的企业和开发者提供的针对文本智能化分析及处理的云服务,意在帮助用户高效处理文本数据,实现数字化和智能化转型。
自然语言处理(Natural Language Processing,缩写作 NLP)是人工智能(AI)领域的一个重要分支,被广泛应用于聊天机器人、机器翻译和搜索引擎等场景。为帮助大家更好地理解NLP技术,腾讯云大学为大家整理了大咖课程《探索 NLP 自然语言处理》的回顾,帮助大家更好地理解NLP自然语言处理技术。
语言承载了人类的思考和文明,我们在日常生活中,使用语言来表达自我、和其他人进行沟通。而在人工智能的世界里,开发者们也拥有一项与机器进行沟通的“法宝”,那就是NLP。 NLP的全称是“自然语言处理”(Natural Language Processing)。微软创始人比尔盖茨曾经表示,“语言理解是人工智能领域皇冠上的明珠“。如何让机器听懂人话,与人交互,甚至是理解人的情感和文化,就是NLP要做的事情,也是当前人工智能领域亟需成长和突破的行业难点。 关于腾讯知文 腾讯云自然语言处理深度整合了腾讯内部
2018年以来,以BERT、GPT等为代表的大规模预训练模型,带来了人工智能领域新的突破,由于其强大的通用性和卓越的迁移能力,掀起了预训练模型往大规模参数化发展的浪潮。其中微软、谷歌、Facebook、NVIDIA等诸多公司在预训练算法上持续大量投入。国内如百度、华为、阿里等公司也相继投入到大规模预训练模型算法的研究中。现阶段,在中文自然语言处理方向上,预训练也如雨后春笋一样涌现。现有算法主要依赖纯文本学习,缺少知识指导学习,模型能力存在局限。
NLP的接口能力包含词法分析、句法分析、篇章分析、向量技术等各方面技术,共涵盖了16种基本原子能力。具体能力可以参考https://cloud.tencent.com/document/product/271/35484
机器之心原创 机器之心编辑部 ChatGPT 军备赛开幕,哪些国内机构具备打造下一个 ChatGPT 的实力? 自从 2022 年底 ChatGPT 发布以来,海内外就掀起了一阵狂潮。推出仅两个月,ChatGPT 月活用户突破 1 亿,成为了史上用户增长速度最快的消费级应用程序。 ChatGPT 成为了搅动人工智能领域风云的新势力,其背后的 OpenAI 也因此成为了当下最热门的 AI 公司,甚至引发了科技巨头们的深度焦虑。 谷歌和微软两家科技巨头正在 ChatGPT 搜索上进行激烈竞争,先后宣布了将大
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wangyaninglm/article/details/88643645
2019年9月7日,云+社区(腾讯云官方开发者社区)主办的技术沙龙——AI技术原理与实践,在上海成功举行。现场的5位腾讯云技术专家,在现场与开发者们面对面交流,并深度讲解了腾讯云云智天枢人工智能服务平台、OCR、NLP、机器学习、智能对话平台等多个技术领域背后架构设计理念与实践方法。 NLP 自然语言处理技术想必大家都不陌生,NLP 可以说是 AI 领域内落地实践最广的技术之一。此次分享,将会从腾讯云NLP技术和能力矩阵出发,浅谈NLP背后的算法、原理及架构。以及在工程实践中,如何应用 NLP 来保障服务的高效及快速迭代。
腾讯云自然语言处理(Natural Language Process,NLP),正式发布 v1.0 版本。产品依托于海量中文语料累积,全面覆盖了从词法、句法到篇章等各个粒度的NLP能力。其中,词法分析包括智能分词、命名实体识别等;句法分析包括文本纠错、句向量等;篇章分析包括情感分析、敏感词识别、文本审核等。
本文介绍了腾讯AI Lab在2017年国际知识图谱构建大赛(KBP)中,首次参赛并获得了实体发现与链接(Entity Discovery and Linking Track,EDL)任务冠军。实体发现与链接任务是KBP赛事的核心任务之一,具有很高的技术挑战性。腾讯AI Lab采用了篇章理解模型和关联图模型,以深度学习架构为基础,通过大规模数据的训练,能够更精准地理解篇章的语义,解决实体的歧义性,并将整篇文章的所有重要信息一起建模到一个图结构当中,整体求解以达到全局最优。TopBase是腾讯AI Lab建设的知识图谱,涵盖50多个领域,亿级实体,10亿级三元组,并已广泛应用到天天快报、微信看一看和微信搜索等业务中。
本文介绍了腾讯AI Lab在2017年国际知识图谱构建大赛(KBP)中,首次参赛并获得了实体发现与链接(Entity Discovery and Linking Track,EDL)任务冠军。实体发现与链接任务是KBP赛事的核心任务之一,具有很高的技术挑战性。腾讯AI Lab在比赛中采用了深度学习架构和篇章理解模型等技术,具有较高的准确性和效率。同时,腾讯AI Lab还建设了一个名叫TopBase的知识图谱,涵盖50多个领域,并已广泛应用到多个业务中。
据腾讯官方公布的信息来看,腾讯混元,腾讯自主研发的通用大语言模型,也是腾讯公司最新发布的自然语言处理模型,基于深度学习和大规模数据训练而成。 腾讯混元大模型是由腾讯全链路自研的通用大语言模型,其目标是通过大规模数据的预训练和Fine-tuning技术来提高自然语言处理的能力,拥有超千亿参数规模,预训练语料超2万亿tokens,具有强大的中文理解与创作能力、逻辑推理能力,以及可靠的任务执行能力,可以应用于机器翻译、文本生成、语义分析等多个领域。
大家好,今天开始和大家分享,我在自然语言处理(Natural Language Processing,NLP)的一些学习经验和心得体会。
近日,腾讯云AI与腾讯优图实验室的加速团队在CLUE语言分类任务上进行试验,一举在分类任务1.0和1.1中拿下业界第一的好成绩。
推荐Github上一个很棒的中文自然语言处理相关资料的Awesome资源:Awesome-Chinese-NLP ,Github链接地址,点击文末"阅读原文"可直达:
由云+社区联合腾讯云免费体验馆及各产品团队举办【玩转腾讯云】征文活动,吸引入驻作者积极参加,非常感谢各位作者的参与。经过评委老师从产品创新性、实用性、可借鉴性、代码规范度、与云计算能力的结合这几个维度的评分以及阅读数、分享数、评论数、收藏数四个维度的指标,综合得出获奖作者名单如下:
近日,腾讯云AI与腾讯优图实验室的加速团队在CLUE语言分类任务上进行试验,一举在分类任务1.0和1.1中拿下业界第一的好成绩。 HUMAN为人类标注成绩,非模型效果,不参与排名 ▲如何与AI进行无障碍的对话? 近年来随着人工智能的发展,NLP(自然语言处理)一直是业内外关注的焦点,其中预训练模型(Pre-Trained Model,PTM)技术作为当下最具有革命性的创新成果,正成为国内外互联网企业探索的重点,构建以中文为核心的超大规模预训练模型及生态势在必行,各大公司在反哺自身业务的同时纷纷向CLUE
周末闲来无事,给AINLP公众号聊天机器人加了一个技能点:中文相似词查询功能,基于腾讯 AI Lab 之前公布的一个大规模的中文词向量,例如在公众号对话窗口输入"相似词 自然语言处理",会得到:自然语言理解、计算机视觉、自然语言处理技术、深度学习、机器学习、图像识别、语义理解、语音识别、自然语言识别、语义分析;输入"相似词 文本挖掘",会得到:数据挖掘、文本分析、文本数据、自然语言分析、语义分析、文本分类、信息抽取、数据挖掘算法、语义搜索、文本挖掘技术。如下图所示:
“君不见,黄河之水天上来,奔流到海不复回。君不见,高堂明镜悲白发,朝如青丝暮成雪。”
自然语言处理被誉为人工智能皇冠上的明珠,也是现在深度学习的两大热门方向之一。学术界每年生产数量惊人的自然语言处理研究论文,而且每隔一段时间就会出现一个里程碑成为圈内榜一话题。我们关注自然语言处理,通常关注的是模型结构和公式推导,理论研究当然很重要,不过,我认为另一个话题同样重要,就是理论创新怎样成为产品迭代的驱动力。
AI 科技评论按:2018 全球人工智能与机器人峰会(CCF-GAIR)在深圳召开,峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办,得到了深圳市宝安区政府的大力指导,是国内人工智能和机器人学术界、工业界及投资界三大领域的顶级交流盛会,旨在打造国内人工智能领域最具实力的跨界交流合作平台。
腾讯AI Lab是腾讯企业级人工智能实验室,于2016年4月在深圳成立,目前其在中国和美国有70位世界级科学家及300余位经验丰富的应用工程师。
作为首个基于中文的DiT架构,腾讯的混元DiT在发布后,仅仅用了1个礼拜的时间,就在GitHub上拿下了1500个星星。相较于那些远在海外的兄弟姐妹们,混元DiT的优势在于能够捕捉到中文的细微含义,甚至是古代诗词、中式菜肴等文化特定元素,并生成与之高度匹配且质量上乘的图像。
不管学界还是业界,对自然语言处理的谈论越来越多,更有甚者,自然语言处理被上升到战略层面。
10月,腾讯云AI中心下的腾讯知文NLP产品推出了新功能,部分接口的性能得到了优化提升。
今日,腾讯AI Lab 宣布开源大规模、高质量的中文词向量数据。该数据包含800多万中文词汇,相比现有的公开数据,在覆盖率、新鲜度及准确性上大幅提高,为对话回复质量预测和医疗实体识别等自然语言处理方向的业务应用带来显著的效能提升。针对业界现有的中文词向量公开数据的稀缺和不足,腾讯 AI Lab此次开源,可为中文环境下基于深度学习的自然语言处理(NLP)模型训练提供高质量的底层支持,推动学术研究和工业应用环境下中文NLP任务效果的提升。 数据下载地址:https://ai.tencent.com/ail
2023 年,各大厂商争先投入 LLM 研发,一年内,在国内累计就有 200 余个大模型正式发布。尽管很多大模型并不完善,但行业内的研究专家及产业领袖都在为大模型的突破甚至 AGI 的发展,做着不懈探索。
人工智能(Artificial Intelligence,简称AI)作为一项革命性的技术,正在改变我们的生活和业务方式。在当今数字化时代,腾讯云作为领先的云计算服务提供商,为开发者提供了广泛的人工智能服务和工具,为他们开拓创新的道路铺平了道路。
同步发表于:本人所属公司博客<知盛数据集团西安研发中心技术博客> https://blog.csdn.net/Insightzen_xian/article/details/81168829
原文链接:https://github.com/fighting41love/funNLP
3月1日至3日,哈工大-腾讯联合实验室自然语言处理专题交流活动在哈尔滨工业大学顺利进行。腾讯AI Lab及腾讯高校合作团队一行九人访问哈尔滨工业大学,与社会计算与信息检索研究中心(SCIR)师生、哈工大-腾讯犀牛鸟基金获奖老师,围绕问答机器人、情感分析、信息检索和数据挖掘等领域的学术前沿研究和产业应用趋势,进行了深入的探讨和交流。 自然语言处理是人工智能最困难且最重要的分支之一。哈工大SCIR研究中心是NLP的领军学术研究团体,腾讯AI Lab的NLP团队则在产业应用方面有着十多年的深厚积累,双方强强联合
10 月19 日,腾讯 AI Lab 宣布开源大规模、高质量的中文词向量数据。该数据包含 800 多万中文词汇。
“ 精英人才培养计划是一项校企联合人才培养项目,入选学生将受到业界顶尖技术团队与高校导师的联合指导及培养。培养期间,学生将获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将引进沟通技巧、商业分析、创新思维等定制课程,定期举办线上线下交流活动,全面提升学生综合素质。入选学生还将获得线上实名社群平台“十分精英圈”的在线访问权限,结识志同道合的科研伙伴,获取业界信息及资源。 ” 今年共有10大方向 81个子课题供大家选择 总有一
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
信息化技术的飞速发展使得海量数据爆发式增长。一方面,越来越多的数据可以为我们的生活带来便利,但另一方面,也给软件开发带来巨大的挑战——图片、声音、视频等不同结构的数据越来越多地出现,为搜索分析带来巨大的挑战,传统的关键词搜索,搜索结果局限于输入的关键词,用户体验较差。向量检索的出现,给我们提供了一个新的思路,向量数据库将非结构化、半结构化甚至是结构化等数据以向量形式存储,实现相似度搜索、聚类、降维等操作,结合机器学习模型,为用户更加智能的搜索服务。
为帮助开发者快速学习云计算一线知识,掌握腾讯云最新产品动态,「腾讯云大学大咖分享」每周邀请技术大咖进行分享。内容涵盖腾讯云云开发、腾讯云数据库、云直播、无服务器云函数 SCF 、人脸识别、文字识别、自然语言处理、智能语言处理、物联网、知识图谱等数十个前沿技术领域,为每一个云计算从业者提供接触前沿趋势,学习热门技术架构的优质学习资源。
百度是中国最具技术基因的互联网企业,一定程度可以说技术是其根基。中文搜索、知识图谱、大数据、自然语言处理、智能广告等细分技术已成为百度独有优势,所有这些技术的基石又是什么呢?答案或许是NLP:自然语言处理。 NLP是搜索引擎的技术之本 搜索引擎最基本的模式是自动化地聚合足够多的“内容”,对之进行解析、处理和组织,响应用户的搜索请求找到对应结果返回。每一个环节,都需要用到自然语言处理。 爬取网页时要分析HTML页面以及处理爬取到的网页内容时,需要对起进行解析、分词、变换等,这十分依赖自然语言处理技术。搜索引
11月,图像分析、人脸识别、自然语言处理NLP推出新功能。腾讯云AI团队联合腾讯优图、AILab、微信智聆、微信智言等实验室,帮助合作伙伴和客户高效打造针对性的解决方案,助力各行各业的数字化和智能化转型。
我始终觉得,入门学习一件事情最好的方式就是实践,加之现在python如此好用,有越来越多的不错nlp的python库,所以接下来的一段时间里,让我们一起来感受一下这些不错的工具。后面代码我均使用jupyter编辑。先来罗列一波:jieba、hanlp、snownlp、Stanfordcorenlp、spacy、pyltp、nltk、Textblob等等…今天从jieba开始吧,let's begin。
这次见面,我问他前段时间在忙什么,需要这么频繁加班。原来,因为国家的净网行动,他工作的线上文学网站要求他们编辑部几乎时时待命,不仅要加大作者每天上传稿件的审核力度,而且在保证审核质量的前提下,要求做到今日稿件、今日审核、今日发布。
领取专属 10元无门槛券
手把手带您无忧上云