正态分布的概率密度函数是描述连续随机变量的分布情况的数学函数。它的形状呈钟形曲线,对称分布于均值周围。在统计学和概率论中,正态分布是非常重要的一种分布。
然而,正态分布的概率密度函数在y轴上的取值范围是[0, +∞),即y大于等于0。因此,对于y大于1的情况,概率密度函数的取值将始终为0,因为概率密度函数表示的是在某个取值点上的概率密度,而概率密度不能大于1。
所以,绘制正态分布的概率密度函数时,对于y大于1的部分,其函数值将始终为0。
norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0, scale=1.0, size=None))
正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:
QQ图通过把测试样本数据的分位数与已知分布相比较,从而来检验数据的分布情况。[1]
本文用Python统计模拟的方法,介绍四种常用的统计分布,包括离散分布:二项分布和泊松分布,以及连续分布:指数分布和正态分布,最后查看人群的身高和体重数据所符合的分布。 # 导入相关模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns %matplotlib inline %config InlineBackend.figure_format ='retina' 随机数
本文用Python统计模拟的方法,介绍四种常用的统计分布,包括离散分布:二项分布和泊松分布,以及连续分布(指数分布、正态分布),最后查看人群的身高和体重数据所符合的分布。
基于概率论的数理统计也即概率统计是现代科学研究的基础工具与方法论,错误的理解与使用概率统计也可能会导致完全错误的研究结果。即使现在,我们随便抽出一篇微生物组学研究的paper,都有可能发现其中概率统计的瑕疵,诸如线性回归算法样品数少于变量数、R2与P值未作校正、聚类结果未作检验等。无论任何时候,我们都应该尝试去反思:我的概率统计知识够吗?
概率分布函数乍一看十分复杂,很容易让学习者陷入困境。对于非数学专业的人来说,并不需要记忆与推导这些公式,但是需要了解不同分布的特点。对此,我们可以在R中调用相应的概率分布函数并进行可视化,可以非常直观的辅助学习。
在之前的两篇 GAN 系列文章--[GAN学习系列1]初识GAN以及[GAN学习系列2] GAN的起源中简单介绍了 GAN 的基本思想和原理,这次就介绍利用 GAN 来做一个图片修复的应用,主要采用的也是 GAN 在网络结构上的升级版--DCGAN,最初始的 GAN 采用的还是神经网络,即全连接网络,而 DCGAN 则是换成卷积神经网络(CNNs)了,这可以很好利用 CNN 强大的特征提取能力,更好的生成质量更好的图片。
# 导入相关模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns %matplotlib inline %config InlineBackend.figure_format = 'retina'
正态分布是高斯概率分布。高斯概率分布是反映中心极限定理原理的函数,该定理指出当随机样本足够大时,总体样本将趋向于期望值并且远离期望值的值将不太频繁地出现。高斯积分是高斯函数在整条实数线上的定积分。这三个主题,高斯函数、高斯积分和高斯概率分布是这样交织在一起的,所以我认为最好尝试一次性解决这三个主题(但是我错了,这是本篇文章的不同主题)。本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高斯积分,其结果对于确定正态分布的归一化常数是非常必要的。最后我们将使用收集的信息理解,推导出正态分布方程。
本文记录高斯分布。 高斯分布 / 正态分布 正态分布是很多应用中的合理选择。如果某个随机变量取值范围是实数,且对它的概率分布一无所知,通常会假设它服从正态分布。有两个原因支持这一选择: 建模的任务的真实分布通常都确实接近正态分布。 中心极限定理表明,多个独立随机变量的和近似正态分布。 在具有相同方差的所有可能的概率分布中,正态分布的熵最大(即不确定性最大)。 一维正态分布 正态分布的概率密度函数为: p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e{-(x-\mu){2}
标准拉普拉斯分布的0.99分位点是3.91,而标准正态分布是2.32,这说明,服从拉普拉斯分布的随机变量,出现极端大的值的概率,要远远大于正态分布。
了解常见的概率分布十分必要,它是概率统计的基石。这是昨天推送的 从概率统计到深度学习,四大技术路线图谱,都在这里!文章中的第一大技术路线图谱如下所示,图中左侧正是本文要总结的所有常见概率分布。
本文的诞生是由于一个朋友在做科研时遇到的一个场景所引出的,场景是这样的: 已知有两组变量X和Y,每组变量都是已知其边缘分布概率密度函数的(比如一组满足正态分布,一组满足对数正态分布),且这两组变量是一定存在相关性的,如何求它们的联合分布函数或联合概率密度函数呢?
PDF:连续型随机变量的概率密度函数是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
直方图 在绘制直方图时,大家可以使用hist(x)这个函数,其中x就是需要进行可视化的数据,当然这个函数还有一个参数就是freq,其默认设置是freq=NULL。当freq=FALSE时,其纵
1) 离散随机变量的均匀分布:假设 X 有 k 个取值:x1, x2, ..., xk 则均匀分布的概率密度函数为:
概率密度的总体形状被称为概率分布 (probability distribution),常见的概率分布有均匀分布、正态分布、指数分布等名称。对随机变量特定结果的概率计算是通过概率密度函数来完成的,简称为PDF (Probability Dense Function)。
概率论,包括它的延伸-信息论,以及随机过程,在机器学习中有重要的作用。它们被广泛用于建立预测函数,目标函数,以及对算法进行理论分析。如果将机器学习算法的输入、输出数据看作随机变量,就可以用概率论的观点对问题进行建模,这是一种常见的思路。本文对机器学习领域种类繁多的概率模型做进行梳理和总结,帮助读者掌握这些算法的原理,培养用概率论作为工具对实际问题进行建模的思维。要顺利地阅读本文,需要具备概率论,信息论,随机过程的基础知识。
概率论与数理统计 Chapter2. 随机变量及概率分布 1. 离散分布 1. 二项分布 1. 概率密度函数 2. 典型应用场景 2. 负二项分布(帕斯卡分布) 1. 概率密度函数 2. 典型应用场景 3. 多项分布 1. 概率密度函数 2. 典型应用场景 4. 超几何分布 1. 概率密度函数 2. 典型应用场景 5. 泊松分布 1. 概率密度函数 2. 典型应用场景 2. 连续分布 1. 均匀分布 1. 概率密度函数 2. 指数分布 1. 概率密度函数 2. 典型应用场景 3. 威布尔
作者 | DarkScope,蚂蚁金服高级算法工程师,致力于算法技术的创新和实际应用,乐于通过博客的方式对技术进行分享和探讨。
概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中,SIGAI将直观的解释概率密度函数的概念,帮你更深刻的理解它。
特征函数是随机变量的分布的不同表示形式。 概述 一般而言,对于随机变量X的分布,大家习惯用概率密度函数来描述,虽然概率密度函数理解起来很直观,但是确实随机变量的分布还有另外的描述方式,比如特征函数。 特征函数的本质是概率密度函数的泰勒展开 每一个级数表示原始概率密度函数的一个特征 如果两个分布的所有特征都相同,那我们就认为这是两个相同的分布 矩是描述概率分布的重要特征,期望、方差等概念都是矩的特殊形态 直觉上可以简单理解为: 各阶矩相等 → 各个特征相等 → 分布相
正态分布,是一种非常常见的连续概率分布,其也叫做常态分布(normal distribution),或者根据其前期的研究贡献者之一高斯的名字来称呼,高斯分布(Gaussian distribution)。正态分布是自然科学与行为科学中的定量现象的一个方便模型。
例如,使用的rstan包采用了一个Hamiltonian Monte Carlo算法。用于贝叶斯建模的另一个rjags包采用了Gibbs sampling算法。尽管细节有所不同,但这两种算法都是基于基本的Metropolis-Hastings算法的变体。
描述性统计是以数字和图表的形式来理解、分析和总结数据。对不同类型的数据(数值的和分类的)使用不同的图形和图表来分析数据,如条形图、饼图、散点图、直方图等。所有的解释和可视化都是描述性统计的一部分。重要的是要记住,描述性统计可以在样本和总体数据上执行,但并不会使用总体数据。
也就是说,正态分布一种分布形式,它实际上有很多表示形式,最常见的有概率密度函数,累计分布函数等等来表示。
知乎上有个讨论,说学数学的看不起搞深度学习的。曲直对错不论,他们看不起搞深度学习的原因很简单,因为从数学的角度看,深度学习仅仅是一个最优化问题而已。比如,被炒的很热的对抗式生成网络(GAN),从数学看,基本原理很容易就能说明白,剩下的仅仅是需要计算资源去优化参数,是个体力活。 本文的目的就是尽可能简单地从数学角度解释清楚GAN的数学原理,看清它的庐山真面目。 01 从生成模型说起 机器学习的模型可分为生成模型和判别模型。 简单说说二者的区别,以二分类问题来讲,已知一个样本的特征为x,我们要去判断它的类别y(
TensorFlow Probability是一个构建在TensorFlow之上的Python库。它将我们的概率模型与现代硬件(例如GPU)上的深度学习结合起来。
来源:DeepHub IMBA本文约2200字,建议阅读5分钟统计学是涉及数据的收集,组织,分析,解释和呈现的学科。 统计的类型 1) 描述性统计 描述性统计是以数字和图表的形式来理解、分析和总结数据。对不同类型的数据(数值的和分类的)使用不同的图形和图表来分析数据,如条形图、饼图、散点图、直方图等。所有的解释和可视化都是描述性统计的一部分。重要的是要记住,描述性统计可以在样本和总体数据上执行,但并不会使用总体数据。 2) 推论统计 从总体数据中提取一些数据样本,然后从这些数据样本中,推断一些东西(结论)。
上回书说道:二项分布和泊松分布的关系,咱们知道,当n很大p很小的时候,二项分布可以使用泊松分布近似求解,那么咱们今天呢,主要研究二项分布和正态分布之间的“爱恨情仇”,正式开始之前,咱们先回顾先讲一下昨天讲到的二项分布,然后讲解什么是正态分布,如何通过python代码实现图形绘制,接着,咱们讲解一下二项分布转换正态分布求解的条件,通过python来看一下,为什么二项分布在某种条件下是可以转换成正态分布近似求解。
就说 X 是服从参数为 (β,α) 的 Gamma 分布,记为Γ(β,α)。Gamma 分布的两个参数中,第一个β 决定了形状 (shape),第二个参数α 决定了尺度 (scale)。
在前面的文章中讲过,很多模型的假设条件都是数据是服从正态分布的。这篇文章主要讲讲如何判断数据是否符合正态分布。主要分为两种方法:描述统计方法和统计检验方法。
统计学一般分统计描述及统计推断两部分。统计描述是通过图表或数学方法,对数据资料进行整理后描述数据的客观规律,而统计推断则是使用从总体中随机抽取的数据样本,用样本数据总结的规律去对总体的未知特征进行推断。本章主要学习统计推断常见的概念及相关基础内容。
1. 离散分布 设 : 1.1 0-1 分布(伯努利分布) 1.2 二项分布(n 重伯努利分布) 记作 。 1.3 多项式分布 多项式分布是二项分布的推广: 1.4 泊松分布 记作 。 1.5 超几何分布 记作 1.6 几何分布 记作 。 2. 连续分布 2.1 均匀分布 概率密度函数 分布函数 记作 。 2.2 指数分布 概率密度函数 分布函数 2.3 拉普拉斯分布 概率密度函数
所谓机器学习和深度学习, 背后的逻辑都是数学, 所以数学基础在这个领域非常关键, 而统计学又是重中之重, 机器学习从某种意义上来说就是一种统计学习。
可以看出他们描述的属于不同的领域,高斯噪声是从概率方面描述,窄带是从带宽方面描述,白噪声是从功率方面描述。
总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。
随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达!
在机器学习或者深度学习领域,生成模型具有非常广泛的应用,它可以用于测试模型的高维概率分布的表达能力,可以用于强化学习、半监督学习,可以用于处理多模输出问题,以及最常见的产生“真实”数据问题。
在平时的科研中,我们经常使用统计概率的相关知识来帮助我们进行城市研究。因此,掌握一定的统计概率相关知识非常有必要。
接上一篇文章,我们继续记录统计力学中的一些基础的概率论知识。这一篇文章主要介绍的是一些常用的概率密度函数的对应参数计算,如期望值、方差等。
机器学习的世界是以概率分布为中心的,而概率分布的核心是正态分布。本文说明了什么是正态分布,以及为什么正态分布的使用如此广泛,尤其是对数据科学家和机器学习专家来说。
博主前面一篇文章讲述了二维线性回归问题的求解原理和推导过程,以及使用python自己实现算法,但是那种方法只能适用于普通的二维平面问题,
随机变量 Random Variables 如果一个变量的值存在一个与之相关联的概率分布,则称该变量为“随机变量(Random Variable)”。数学上更严谨的定义如下: 设随机试验的样本空间为S={e},X=X(e)是定义在样本空间S上的实值单值函数,称X=X(e)为随机变量。 一个最常见的随机数例子就是扔硬币,例如可以记正面为1,反面为0。更复杂的情况是扔10次硬币,记录出现正面的次数,其值可以为0到9之间的整数。 通常可以将随机变量分为离散型随机变量(Discrete Random Varia
我们从高中就开始学正态分布,现在做数据分析、机器学习还是离不开它,那你有没有想过正态分布有什么特别之处?为什么那么多关于数据科学和机器学习的文章都围绕正态分布展开?本文作者专门写了一篇文章,试着用易于理解的方式阐明正态分布的概念。
领取专属 10元无门槛券
手把手带您无忧上云