周老师这本书用来当教材确实不错,不过自学的话跟李航老师的《统计学习方法》来比,确实不够详细,但周老师的书广度上要更加广泛。
入门读物: 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。难易程度:非常易。 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。 数学之美 (豆瓣) 这本书非常棒啦,入门读起来很不错! 数据分析: SciPy and NumPy (豆瓣) 这本书可以归类为数据分析书吧,因为numpy和
机器之心报道 编辑:张倩 《统计学习导论》很经典,但用的是 R 语言,没关系,这里有份 Python 版习题实现。 斯坦福经典教材《The Element of Statistical Learning》(简称 ESL)被称为频率学派的统计学习「圣经」,由三位统计学大师——Trevor Hastie、Robert Tibshirani、Jerome Friedman 共同完成。这本书介绍了神经网络、支持向量机、分类树和 boosting、图模型、随机森林、集成方法、Lasso 最小角度回归和路径算法、非负矩
我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的时间里想学习一下数据分析或者数据挖掘。现在大数据这个词搞得蛮火的,不少公司也有在招聘数据分析员。 抱着「技多不压身」的想法我也想稍微学习一下。说不定以后的工作也会需要。我稍微了解了一下,数据分析最基础就是用excel来工作。不过我计算机专业出身的人,还是想通过用编程语言的方法来学习。听说R语言不错,我也稍微了解了一下。 不过现在要学数据分析的话
我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的时间里想学习一下数据分析或者数据挖掘。现在大数据这个词搞得蛮火的,不少公司也有在招聘数据分析员。 抱着「技多不压身」的想法我也想稍微学习一下。说不定以后的工作也会需要。我稍微了解了一下,数据分析最基础就是用excel来工作。不过我计算机专业出身的人,还是想通过用编程语言的方法来学习。听说R语言不错,我也稍微了解了一下。 不过现在要学数据分析的话,我可以从
最近读者数量增长了不少。有许多新读者留言,说自己想入门 Python 与数据科学,希望我能够推荐一些教材书籍。
本文与大家分享一些Python编程语言的入门书籍,其中不乏经典。我在这里分享的,大部分是这些书的英文版,如果有中文版的我也加上了。有关书籍的介绍,大部分截取自是官方介绍。 Python基础教程(Beg
📌 在今天的这篇博客中,猫头虎博主将与大家深入探讨Python数据分析在职场中的重要性,以及如何学习和应用Python进行数据分析。让我们一起探索“Python数据分析”这一热搜词条,看看作为一个程序员,你是否真的掌握了这一关键技能!
上次我们发书单时,有身在国外的读者提出电子书的需求。如今,电子设备和移动互联网为阅读和学习提供了极大的便利性,电子书有了全新体验。因此本文提供了这5本书的亚马逊电子书链接,希望对你有所帮助。(还有优惠活动正在进行中哦!)
1. 深入浅出数据分析 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。 难易程度:非常易。 2.啤酒与尿布 通过案例来说事情,而且是最经典的例子。 难易程度:非常易。 3.数据之美 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。 难易程度:易。 4.集体智慧编程 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。 难易程度:中
如果你从未接触过编程,那么推荐本篇中的教材资源给你。在这里对你的编码经验完全没有要求。倘若你有过编程经验,可以看下我们准备的进阶页面:
导读:马云说996是“修来的福报”;刘强东给你讲了“地板闹钟的故事”;李国庆认为“管理者提高决策科学性比员工加班更有价值”;经济学家林采宜直接怼马云,说“996是一种洗脑文化”。
1. 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。 难易程度:非常易。 2. 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。 难易程度:非常易。 3. 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。 难易程度:易。 4. 集体智慧编程 (豆瓣) 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子
总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟 = =,持续更新ing~ 数据分析 实习的时候只会Matlab,公司小,没钱买正版,所以领导要我两星期把R学会,当时看的有这些书 1.R语言实战 评价:很好的入门书,从安装、入门、基本的统计分析,作图命令,以及常见的分类、回归、降维等方法都有写 推荐指数:五颗星 2.数据分析-R语言实战 评
总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟 = = 数据分析篇 实习的时候只会Matlab,公司小,没钱买正版,所以领导要我两星期把R学会,当时看的有这些书 1.R语言实战 https://book.douban.com/subject/20382244/ 评价:很好的入门书,从安装、入门、基本的统计分析,作图命令,以及常见的分类、回
1、Python基础教程 本书是经典教程的全新改版,作者根据Python 3.0版本的种种变化,全面改写了书中内容,做到既能“瞻前”也能“顾后”。本书层次鲜明、结构严谨、内容翔实,特别是在最后几章,作
最近一直看一本python经典教材——《Python学习手册》,因为之前都是突击学的,也没有仔细看一些经典教材,所以感觉自己的基础掌握的还不是很好,虽然网络上资源多,但我觉得还是有必要买本教材来认真的读一读,底层基础决定上层建筑嘛,基础打牢一些,对今后的编程还是会有些帮助的。
同时在本微信公众号中,回复“SIGAI”+日期,如“SIGAI0515”,即可获取本期文章的全文下载地址(仅供个人学习使用,未经允许,不得用于商业目的)。
👆点击“博文视点Broadview”,获取更多书讯 在一个充斥着无人车、无人机、智能机器人的未来世界里,必然少不了计算机视觉技术的赋能! 未来已来,掌握计算机视觉这门技术势在必行! 本期书单整理了计算机视觉领域的10本佳作,它们有影响一代脑、认知、计算机视觉专家的经典著作,也有基于各种理论、工具进行讲解的实战派,更有大神毛星云的收官之作! 希望它们能够帮助大家打开计算机视觉领域的大门! 01 《视觉:对人类如何表示和处理视觉信息的计算研究》 [美] David Marr 著,吴佳俊 译 原著豆瓣评分9
ChatGPT对自然语言处理(NLP)冲击很大,首先第一点,NLP的书就不好卖了。
平时有不少读者朋友问,有没有学习书籍网上课程推荐?今天结合自己学习经历与身边几个朋友的经历总结了一份程序员相关的书籍和网课。
👆点击“博文视点Broadview”,获取更多书讯 说起学数学,你是不是就会开始头疼: 抽象 枯燥 不好理解 看数学书就像啃天书 …… 总之一个字:“难”! 数学仿佛一座难以逾越的大山,让很多想要进入像人工智能等需要有数学基础的领域的朋友望而却步,也让很多为了考研等不得不学习数学的朋友艰难前行! 数学,很重要,不得不学习! 可是,它又很难学,怎么办? 你的痛,博文菌懂! 所以,今天就给你推荐一本看得懂又好看的数学书——《马同学图解线性代数》,这是一本万人亲测的硬核教程,有百幅图解助力,让学数学不再是
有些标题党了,打我可以但是不可以打我脸,推荐我是认真的,4000 字长文,请慢慢食用
👆点击“博文视点Broadview”,获取更多书讯 任何一个开源框架或者工具,想要深入掌握其实现原理与运行机制,第一步当然是熟练使用它,紧接着便是深入其项目源码进行学习和实战。 然而,很多人一直在第一步徘徊,面对海量的复杂源码,他们往往是望而却步,这也严重阻碍了很多程序员的发展。 目前来说,Django框架是Python Web领域最流行的框架之一,与之齐名的有号称"小而精"的Flask框架以及以高性能著称的Tornado框架。 Django的特点是"大而全",这一点当你阅读了Django源码后就会深有体
在 上次的送书活动 中,营长做了个调查问卷,结果显示大家更喜欢深度学习、Python以及TensorFlow方面的书,所以这期送书活动一并满足大家。本期图书选自人民邮电出版社图书,包括:近期AI圈儿比较流行的一本书《人工智能简史》,《TensorFlow机器学习项目实战》,高实战性的《Python机器学习经典实例》,深度学习领域的圣经“花书”,经典的《机器学习实战》,广受欢迎的《流畅的Python》,东京大学教授、机器学习专业专家杉山将执笔《图解机器学习》。另外,可在文末投票,选出下期你希望营长能够送的
未来已来 如同互联网发展的浪潮,AI正在创造一个全新的世界。 面对AI发展的新浪潮,越来越多的人开始涉足AI领域,研究AI知识,跨入AI大门。而Python,Python作为2017年最受欢迎的人工智
计算机核心基础知识方面,算法、数据结构、组成原理、网络等涉及到的基础知识一定要彻底掌握,牢牢记住并融会贯通。越是厉害的公司,越注重考察这类基础知识。相比短期能力,他们更看中的是长期潜力。
统计学与数据挖掘书籍推荐 1.1《 The Elements of Statistical Learning 》,神书,不解释 1.2《实用多元统计分析》,从线性代数的角度详细讲解算法,例子简单,国外课程教材 1.3《统计学习方法》,李航著,统计学习算法必备书籍 1.4《从零进阶!数据分析的统计基础》 CDA 数据分析师系列丛书 1.5《统计学:从数据到结论》 1.6《数据挖掘:概念与技术》 数据分析软件篇 SQL 书籍推荐 《 MySQL 必知必会》 SPSS 推荐书籍 《SPSS统计分析基
整理 | 阿司匹林 出品 | 人工智能头条(公众号ID:AI_Thinker) Python 有多好应该不用多说了,毕竟它是“钦定的”最接近 AI 的语言。(当然,PHP 才是最好的语言。) 此外,学会 Python 的好处多多,包括但不限于“出任 CEO,迎娶白富美(高富帅),走上人生巅峰”。 致富经已经告诉大家了,现在的问题是,如何开始? 在 Python 的地界,有一本备受推崇的经典教材——Learn Python the Hard Way,有人将其亲切地翻译为《笨方法学 Python》。(在线阅览地
趣味算法-01-跟着作者读《趣味算法(第2版)》上 趣味算法-02-跟着作者读《趣味算法(第2版)》下 趣味算法-03-跟着作者读《趣味算法(第2版)》-算法之美 趣味算法-04-跟着作者读《趣味算法(第2版)》-贪心算法
哈喽小伙伴们,我是你们的老朋友 cxuan,今天这篇文章不聊技术,我们来谈一个特别的话题。在聊这个话题前,我想先确认个事儿,在座的大部分大学所选的专业应该都是计算机相关的吧,如果不是计算机相关,但你在从事这个行业之前肯定应该了解过计算机应该都要学习哪些内容吧,那么你还记得你上大学的时候,你们的计算机教材都有哪些吗?
http://blog.csdn.net/han_xiaoyang/article/details/50759472
跟挺多非物理专业的同学聊天,被问到的最多的就是这个问题了。挺多同学也想转到理论物理专业并且做一些理论物理的研究。咱们今天就来聊聊这个话题。主要是下次被问到的话就可以直接把这一篇分享过去了。不过这个也只是我的个人观点。大家可以在留言区进行一些补充。
1. 引言 也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸;也自然而然点开今日头条推给你的新闻;也习惯逛淘宝点了找相似之后货比三家;亦或喜闻乐见微软的年龄识别网站结果刷爆朋友圈。恩,这些功能的核心算法就是机器学习领域的内容。 套用一下大神们对机器学习的定义,机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构使之不断改善自身。简单一点说,就是计算机从数据中学习出规律和模式,以应用在新数据上做预测的任务。近年
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
前几天在Python白银交流群【大侠】问了一个Pandas实战的问题,一起来看看吧。
我们公众号之前曾经推送过类似的推文,但当时推荐的书籍不是很全面,另一方面笔者最近又看了不少经典的脑电书籍,因此在这里就重新做一个梳理,把一些经典的EEG脑电方面的教材推荐给大家,希望对EEG领域的同学和研究者有所帮助。
使用Python进行数据分析,大家都会多少学习一本经典教材《利用Python进行数据分析》,书中作者使用了Ipython的交互环境进行了书中所有代码的案例演示,而书中的Ipython交互环境用的是原生Python开发环境,在原生环境里,由于没有代码提示、自动格式等智能辅助给你,导致编码效率有点低下,之前就有很多人在问,能不能在PyCharm这款目前最流行最智能的python IDE里设置Ipython的交互环境,我自己也做了尝试,经过自己不断摸索和实践,总结出了在PyCharm设置Ipython交互环境和宏快捷键的方法,现已图文方式分享给大家。
今天看完大壮老师《用Python玩转数据》的网络数据获取,决定来上手操作一下。就尝试抓取业界享誉好评《统计学习方法》的前100条评论,计算出平均得分。
数学是学不完的,也没有几个人能像博士一样扎实地学好数学基础,入门人工智能领域,其实只需要掌握必要的基础知识就好。AI的数学基础最主要是高等数学、线性代数、概率论与数理统计三门课程,这三门课程是本科必修的。这里整理了一个简易的数学入门文章:
清华、北大、MIT、CMU、斯坦福的学霸们在新学期里要学什么?数据叔决定盘点一下那些世界名校计算机专业采用的教材。不用多说,每本都是经典的烧脑技术书,建议配合防脱发产品一起食用。
原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。
本文对知乎上关于Python入门方面的问答、文章、专栏做了一定的收集和整理,希望对各位Python学习者能有帮助,至少可以节省大家一点时间。
《动手学深度学习》是加州大学伯克利分校 2019 年春学期 Introduction to Deep Learning 课程教材《Dive into Deep Learning》的中文版。课件及教学视频:
国内良莠不齐的C语言教程数不胜数,同名如“C程序设计”“C语言程序设计”“C语言程序设计教程”的都多如牛毛,这些不知名的就不予考虑了,要看就看经典。笔者呕心沥血翻阅十几本C语言入门书,去其糟粕取其精华,推荐以下这些C语言入门经典书籍,希望你能少走弯路,走入C语言的神奇世界。
花下猫语:自从翻译了 Python 之父的第二篇文章,我不仅知道了 pgen解析器的起源 ,而且还知道了“龙书”对 Python 之父的影响很大。而且有趣的是,与“龙书”并提的还有什么“虎书”、“鲸书”,这些称呼太有意思了。
👆点击“博文视点Broadview”,获取更多书讯 为期半个月的冬奥会即将落下帷幕,在冰雪健儿热情展示平时训练结果的同时,你心中是不是还有谷爱凌的1620高难度动作,以及俄罗斯三娃(K宝瓦利耶娃、谢尔巴科娃、特鲁索娃)的超美舞姿…… 是不是还没有看过瘾呢? 谷爱凌在比赛中 K娃瓦利耶娃在比赛中 她们在比赛的同时,也给我国的滑雪等冬季运动项目的普及带来了非常好的宣传推广。 据统计,本届冬奥会创下了收视率新高,受到了国内外的一致好评,除了中国运动健儿获得的金牌外,更多的是绚丽的画面、精彩的比赛瞬
本书由Wes McKinney创作,他是Python pandas项目的创始人。本书是对Python数据科学工具的实操化、现代化的介绍,非常适合刚学Python的数据分析师或刚学数据科学以及科学计算的Python编程者。
数据的资产属性赋予了数据巨大的价值,数据的使用有极其广阔的前景;而用户对隐私保护的要求又极大限制了数据的使用。 在这种两难的情景下,基于数据隐私保护技术实现的分布式训练范式——联邦学习——应运而生,受到学术界和工业界的广泛关注。 为了帮助读者们更好地将联邦学习进行落地应用,博文视点特地邀请到微众银行资深人工智能算法专家黄安埠老师为大家直播分享“实践中的联邦学习——落地应用案例讲解”,从实战的角度,讲述联邦学习部分已落地的应用案例,既可为工业实践者提供案例,又可引领初学者入门。 分享主题:实践中的联邦学习—
本博文所整理的机器学习书籍来自于博主平时的积累的一些资料,可能还有一些经典的机器学习书籍为包含其中,欢迎大家留言区补充,分享给大家。(本文所陈列的所有书籍电子版请链接:http://pan.baidu.com/s/1c10iQnm ) 01 机器学习-Tom M.Mitchell Tom M.Mitchell,是卡内基梅隆大学的教授,讲授“机器学习”等多门课程;美国人工智能协会(AAAL)的主席;美国《Machine Learning》杂志、国际机器学习年度会议(ICML)的创始人;多种技术
领取专属 10元无门槛券
手把手带您无忧上云