首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

线性回归缩放特征

在线性回归中,特征缩放是一个重要的预处理步骤,它可以帮助改善模型的性能和稳定性。以下是关于线性回归特征缩放的相关信息:

特征缩放的目的

  • 使得每个特征“范围”更接近:特征缩放的主要目的是使得不同特征具有相似的尺度,这样可以避免某些特征因数值范围过大而对模型造成主导影响。
  • 让计算变得更加简单:例如,在梯度下降算法中,特征缩放可以加速参数的收敛速度。
  • 提高模型性能:对于对距离敏感的算法(如KNN、SVM、PCA等),特征缩放可以显著提高模型的性能。

常见的特征缩放方法

  • 标准化(StandardScaler):将特征值转换为均值为0,标准差为1的分布。这种方法适用于数据的分布范围不固定或特征不服从统一分布的情况。
  • 归一化(MinMaxScaler):将数据缩放到[0, 1]或[-1, 1]之间。这种方法适用于数值范围变化较大的特征,或者特征之间单位差异较大的情况。
  • 最大绝对值缩放(MaxAbsScaler):将特征的绝对值缩放到[-1, 1]的范围内,主要用于数据存在正负值且不想改变数据的稀疏性的情况下。

特征缩放对模型的影响

  • 加速收敛:对于使用梯度下降的算法,特征缩放可以加速参数的收敛速度。
  • 提高模型准确性:特征缩放可以避免某些特征因数值范围过大而对模型造成主导影响,从而提高模型的准确性。

通过上述方法,可以有效地对线性回归模型的特征进行缩放,从而提升模型的性能和稳定性。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

机器学习(六)——线性回归的多变量、特征缩放、标准方程法

机器学习(六) ——线性回归的多变量、特征缩放、标准方程法 (原创内容,转载请注明来源,谢谢) 一、多变量 当有n个特征值,m个变量时,h(x)=θ0+θ1x1+θ2x2…+θnxn,其中可以认为x0=...二、特征缩放(FeatureScaling) 特征缩放的目的,是为了让每个特征值在数量上更加接近,使得每个特征值的变化的影响相对比较“公平”。...四、多项式回归(Polynomialregression) 当图像用直线表示不是很准确的时候,可以考虑使用其他函数,如二次、三次、根号等函数进行表示。...主要原因: 出现这种情况的主要原因,主要有特征值数量多于训练集个数、特征值之间线性相关(如表示面积采用平方米和平方公里同时出现在特征值中)。...缺点:需要调试出合适的学习速率α、需要多次迭代、特征值数量级不一致时需要特征缩放。 2)标准方程法 优点:不需要α、不需要迭代、不需要特征缩放,直接解出结果。

1K81

机器学习(六) ——线性回归的多变量、特征缩放、标准方程法

机器学习(六)——线性回归的多变量、特征缩放、标准方程法 (原创内容,转载请注明来源,谢谢) 一、多变量 当有n个特征值,m个变量时,h(x)=θ0+θ1x1+θ2x2…+θnxn,其中可以认为x0...二、特征缩放(FeatureScaling) 特征缩放的目的,是为了让每个特征值在数量上更加接近,使得每个特征值的变化的影响相对比较“公平”。...四、多项式回归(Polynomialregression) 当图像用直线表示不是很准确的时候,可以考虑使用其他函数,如二次、三次、根号等函数进行表示。...主要原因: 出现这种情况的主要原因,主要有特征值数量多于训练集个数、特征值之间线性相关(如表示面积采用平方米和平方公里同时出现在特征值中)。...缺点:需要调试出合适的学习速率α、需要多次迭代、特征值数量级不一致时需要特征缩放。 2)标准方程法 优点:不需要α、不需要迭代、不需要特征缩放,直接解出结果。

1.1K60
  • Statsmodels线性回归看特征间关系

    线性回归拟合散点图 一般在不使用statsmodels模块时,运用线性回归加散点图的绘制组合图,同样可以以此判断变量是否线性相关性。 以Open为预测自变量,Adj_Close 为因变量,绘制散点图。...多元线性回归 多元线性回归模型公式 βββε 运用多元线性回归模型可以加入多个变量,看看哪些自变量的组合更优地满足OLS最小二乘假定。从而分析影响收盘价格的影响因素。...# 多个特征 stock_models = ols("Adj_Close ~ Open + High + Low + Volume", data=df).fit...如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。 多项式回归,回归函数是回归变量多项式的回归。多项式回归模型是线性回归模型的一种,此时回归函数关于回归系数是线性的。...Scikit-learn 中,我们可以通过 PolynomialFeatures() 类自动产生多项式特征矩阵。

    3.6K20

    Statsmodels线性回归看特征间关系

    线性回归图像 Statsmodels的plot_regress_exog函数来帮助我们理解我们的模型。 根据一个回归因子绘制回归结果。...多元线性回归模型公式 βββε 运用多元线性回归模型可以加入多个变量,看看哪些自变量的组合更优地满足OLS最小二乘假定。...# 多个特征 stock_models = ols("Adj_Close ~ Open + High + Low + Volume", data=df).fit...如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。 多项式回归,回归函数是回归变量多项式的回归。多项式回归模型是线性回归模型的一种,此时回归函数关于回归系数是线性的。...Scikit-learn 中,我们可以通过 PolynomialFeatures() 类自动产生多项式特征矩阵。

    3.7K20

    漫谈特征缩放

    作者: 时晴 说起"炼丹"最耗时的几件事,首先就能想到的就是数据清洗,特征工程,还有调参.特征工程真的是老生常谈了,但是特征工程又是最重要的一环,这一步做不好怎么调参也没用.在特征工程中,做特征缩放是非常重要的...,如下图所示: 我们可以看到,在没做特征缩放前,用kmeans跑出的聚类结果就如图所示,以y=0为分界线,上面是一类,下面是一类,相当的离谱.主要原因就是y值的取值范围很大,从-4000~4000,而...Scaling的目的很简单,一方面是使得每列特征“范围”更接近,另一方面是让计算变得更加简单,如梯度下降在特征缩放后,将缩放的更快,效果更好,所以对于线性回归,逻辑回归,NN都需要做特征缩放: 特征缩放有很多种...我们发现,对偏态分布的数据缩放后并没有改变其分布.我们对数据做次log再缩放呢?...MinMaxScaler: 不适用于有异常值的数据;使得数据缩放到0~1. MaxAbsScaler: 不适用于有异常值的数据;使得数据缩放到-1~1.

    97830

    特征工程之特征缩放&特征编码

    ---- 3.2 特征缩放 特征缩放主要分为两种方法,归一化和正则化。...它对原始数据进行线性变换,使得结果映射到[0,1]的范围,实现对原始数据的等比缩放,公式如下: ? 其中 X 是原始数据, ? 分别表示数据最大值和最小值。...5.归一化不是万能的,实际应用中,通过梯度下降法求解的模型是需要归一化的,这包括线性回归、逻辑回归、支持向量机、神经网络等模型。...特性 1.在工业界很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列 0/1 的离散特征。 其优势有: 离散化之后得到的稀疏向量,内积乘法运算速度更快,计算结果方便存储。...逻辑回归属于广义线性模型,表达能力受限,只能描述线性关系。特征离散化之后,相当于引入了非线性,提升模型的表达能力,增强拟合能力。 离散化之后可以进行特征交叉。

    1.4K20

    线性回归:简单线性回归详解

    【导读】本文是一篇专门介绍线性回归的技术文章,讨论了机器学习中线性回归的技术细节。线性回归核心思想是获得最能够拟合数据的直线。...文中将线性回归的两种类型:一元线性回归和多元线性回归,本文主要介绍了一元线性回归的技术细节:误差最小化、标准方程系数、使用梯度下降进行优化、残差分析、模型评估等。在文末给出了相关的GitHub地址。...Linear Regression — Detailed View 详细解释线性回归 线性回归用于发现目标与一个或多个预测变量之间的线性关系。...有两种类型的线性回归 – 一元线性回归(Simple)和多元线性回归(Multiple)。 一元线性回归 ---- 一元线性回归对于寻找两个连续变量之间的关系很有用。...当样本特征维数变大时,求逆会比较耗时。 下面是方程的python实现。

    2K80

    线性回归

    线性模型、线性回归与广义线性模型 逻辑回归 工程应用经验 数据案例讲解 1....线性模型、线性回归与广义线性回归 1.1 线性模型 image 线性模型(linear model)试图学得一个通过属性的线性组合来进行 预测的函数: image 向量形式: image 简单...) image 欠拟合:模型没有很好地捕捉到数据特征,不能够很好地拟合数据 过拟合:把样本中的一些噪声特性也学习下来了,泛化能力差 实际工业界使用的各种模型都存在过拟合的风险: 更多的参数/特征,更复杂的模型...对于样本 image 如果我们希望用线性的映射关系去逼近y值 可以得到线性回归模型 image 有时候关系不一定是线性的 如何逼近y 的衍生物?...比如令 image 则得到对数线性回归 (log-linear regression) 实际是在用 image 逼近y image 要点总结 线性回归 线性映射关系 yˆ=θTX 损失函数

    83030

    线性回归 - 岭回归

    本文记录岭回归角度进行线性回归的方法。...问题描述 考虑一个线性模型 {y}=f({\bf{x}}) 其中y是模型的输出值,是标量,\bf{x}为d维实数空间的向量 线性模型可以表示为: f(\bf{x})=\bf{w} ^Tx,w\in...\mathbb{R} 线性回归的任务是利用n个训练样本: image.png 和样本对应的标签: Y = [ y _ { 1 } \cdots \quad y _ { n } ] ^ { T } \quad...y \in \mathbb{R} 来预测线性模型中的参数 \bf{\omega},使得模型尽可能准确输出预测值 线性回归 / 岭回归 岭回归就是带有L_2正则的线性回归> 之前最小二乘法的损失函数...: L(w)= w^{T} X{T{\prime}} X w-2 w^{T} X^{T} Y+Y^{T} Y 岭回归的代价函数: image.png 上式中 \lambda 是正则化系数,现在优化的目标就转为

    1.3K10

    线性回归

    设:$$y=ax_1+b_x2$$ 这公式那么一写阿,瞅起来像是一个线性模型,简单理解也就是一条线嘛。...有了公式,现在回头来看看真实的问题和真实的数据该怎么处理: House Prices: Advanced Regression Techniques 房价:先进的回归技术 housing = pd.read_csv...2.1、如果是数值继续后续操作 2.2、如果不是数值,定义对应关系,将数据对应到数值 3.去除异常数据 4.绘制散点图和线性关系 那么接下来我们吧数据统一重新处理一下: train_house...15%以上,那这项特征应该予以删除并认为数据集中不存在这样的特征。...submisson.csv", index=False) 我们把submission提交到Kaggle的平台上,看看能获得什么样的分数: [在这里插入图片描述] 结果显示并不是很好,当然,我们还有好多因素没有考虑,不过,线性回归

    1.2K20

    线性回归

    统计学习方法 算法(线性回归) 策略(损失函数) 优化(找到最小损失对于的W值) 线性回归 寻找一种能预测的趋势 线性关系 二维:直线关系 三维:特征,目标值,平面当中 线性关系定义 h(w)=w0...+w1x1+w2x2+… 其中w,x为矩阵: w表示权重,b表示偏置顶 损失函数(误差大小:只有一个最小值) yi为第i个训练样本的真实值 hw(xi)为第i个训练样本特征值组合的预测函数 总损失的定义...测试集表现不好 最小二乘法之梯度下降 理解:沿着损失函数下降的方向找,最后找到山谷的最低点,然后更新W值 学习速率:指定下降的速度 使用:面对训练数据规模十分庞大的任务 适合各种类型的模型 注意:特征值和目标值都需要做标准化处理...train_test_split(df.data, df.target, test_size=0.25) # 下面均方误差 需要用到为标准化之前的数据 mse_test = y_test # 给特征值标准化...= std_y.inverse_transform(lr.predict(x_test)) # std_y.inverse_transform() 转换数据 print(lr.coef_) # 显示回归系数

    42560

    线性回归

    线性回归 线性回归预测函数: 逻辑回归预测函数: 线性回归损失函数: 逻辑回归损失函数: MSE直接应用到LR中会导致损失函数变成非凸函数,所以我们加入log让损失函数变成了凸函数...二项分布中): 非二项分布: 损失函数(经验损失+结构损失): 两者损失函数求导后,除了假设函数不一样,表示形式是一样的: 损失函数中参数倍数变化并不会影响最优值的最终结果 1.1 逻辑回归...sigmiod 其中\theta是收敛之后得到的结果 根据sigmoid曲线,h_{\theta}≥0时,置为1;否则置为0 1.1.1.1 决策边界 1.1.2 代价函数 当我们把线性回归的代价函数放到逻辑回归上使用时...分析 化简 得到如下结果,使用了==极大似然法==(能够在统计学中能为不同模型快速寻找参数),并且结果是凸函数 参数梯度下降: ==可以发现,求导后线性回归和逻辑回归的公式是一样的,但是他们的假设函数...增加数据量 dropout 清晰数据 提取终止训练 1.4.2 欠拟合 增加特征和数据 增加高阶多项式项 减少正则化参数 1.5 正则化惩罚项 加入惩罚项后,会降低高维参数的值,让他们趋于0(也就是==

    80520

    线性回归

    于是我又找到吴恩达的Marchine Learning课程,再次学习了线性回归和Logistic回归。...Machine Leanring这门课程是先从线性回归讲起,然后再介绍的Logistic回归,个人感觉这样的次序更容易理解。...一旦有了这些回归系统,再给定输入,做预测就非常容易。 回归中使用得最多的就是线性回归,而非线性回归问题也可以经过变化,简化为线性回归问题。比如有如下图所示的数据集: ? 可以通过引入高阶多项式: ?...其中μi是特征(i)的所有值的平均值,si是值的范围(max - min)或标准偏差。...所以如果有很多特征,那么正态方程求解将会很慢。在实践中,当n超过10,000时,采用梯度递减算法更合适。 小结 在《机器学习实战》第8章,还介绍了局部加权线性回归。

    69530

    多元线性回归的模型解释、假设检验、特征选择

    简单线性回归:当只有一个输入变量时,它是线性回归最简单的形式。 多元线性回归:这是一种线性回归的形式,当有两个或多个预测因子时使用。...我们还将使用Python构建一个回归模型。 最后,我们将深入学习线性回归,学习共线性、假设检验、特征选择等内容。 现在有人可能会想,我们也可以用简单的线性回归来分别研究我们对所有自变量的输出。...多元线性回归通过在一个表达式中考虑所有变量来解决这个问题。因此,我们的线性回归模型现在可以表示为: ?...为了找到这一点,我们将执行特征选择或变量选择。一种方法是尝试所有可能的组合。...特征选择 做特征选择的两种最流行的方法是: 正向选择:我们从一个没有任何预测器的模型开始,只使用截距项。然后,我们对每个预测器执行简单的线性回归,以找到最佳执行器(最低RSS)。

    2.1K10
    领券