特征提取——纹理特征 LBP图像特征 图像处理之特征提取(二)之LBP特征简单梳理 https://blog.csdn.net/coming_is_winter/article/details/72859957...Harwood 在1994年提出,用于纹理特征提取。...,当图像纹理绞细致、灰度分布均匀时,能量值较大,反之,较小。...,纹理清晰、规律性较强、易于描述的,值较大;杂乱无章的,难于描述的,值较小。...=red>各个尺度和方向上的纹理信息,同时在一定程度上降低了图像中光照变化和噪声的影响。
2.纹理特征提取 一幅图像的纹理是在图像计算中经过量化的图像特征。图像纹理描述图像或其中小块区域的空间颜色分布和光强分布。纹理特征的提取分为基于结构的方法和基于统计数据的方法。...一个基于结构的纹理特征提取方法是将所要检测的纹理进行建模,在图像中搜索重复的模式。该方法对人工合成的纹理识别效果较好。但对于交通图像中的纹理识别,基于统计数据的方法效果更好。...Harwood 提出[43][44],用于纹理特征提取。后来LBP方法与HOG特征分类器联合使用,改善了一些数据集[45]上的检测效果。...(2)灰度共生矩阵 灰度共生矩阵是另一种纹理特征提取方法,首先对于一幅图像定义一个方向(orientation)和一个以pixel为单位的步长(step),灰度共生矩阵T(N×N),则定义M(i,...如图 3‑5所示,(a)为原图的灰度图,(b)为高斯滤波平滑图,(c)和(d)分别是手动设置的高低门限值如图所示的canny边缘检测结果。
纹理特征提取方法:LBP, 灰度共生矩阵 在前面的博文《图像纹理特征总体简述》中,笔者总结了图像纹理特征及其分类。在这里笔者对其中两种算法介绍并总结。...参考网址: 《纹理特征提取》 《【纹理特征】LBP 》 《灰度共生矩阵(GLCM)理解》 《灰度共生矩阵的理解》 《图像的纹理特征之灰度共生矩阵 》 参考论文: 《基于灰度共生矩阵提取纹理特征图像的研究...》——冯建辉 《灰度共生矩阵纹理特征提取的Matlab实现》——焦蓬蓬 一....对比度 [图片] 对比度是灰度共生矩阵主对角线附近的惯性矩,它体现矩阵的值如何分布,反映了图像的清晰度和纹理沟纹的深浅。 c....求出该灰度共生矩阵各个方向的特征值后,再对这些特征值进行均值和方差的计算,这样处理就消除了方向分量对纹理特征的影响。 C.
<img src="http://upload-images.jianshu.io/upload_images/1689929-519d3b5f49a4<em>c</em>31a.png?...因此,在人为定义特征的时候,我们也会去定义一些<em>纹理</em>特征。...在这次实验中,我们用数学的方法定义图像的<em>纹理</em>特征,分别计算出来后就可以放入四个经典的传统分类器(随机森林,支持向量机,AdaBoost,BP-人工神经网络)中分类啦。...实验过程尽量简化,本实验的重点是检验<em>纹理</em>特征对PET/CT图像分类的效果,因此,有些常规的代码我们就用标准的函数库足够啦。...; first_term_den = nd_nz_p_r + nd_nz_p_<em>c</em>; second_term = (nd_nz_p_r .* nd_nz_NGTDMop_r) + (nd_nz_p_<em>c</em> .
,提出的具有广泛性的纹理分析方法。...对于纹理变化缓慢的图像,其灰度共生矩阵对角线上的数值较大;而对于纹理变化较快的图像,其灰度共生矩阵对角线上的数值较小,对角线两侧的值较大。...由于灰度共生矩阵的数据量较大,一般不直接作为区分纹理的特征,而是基于它构建的一些统计量作为纹理分类特征。...它是定义一组纹理特征的基础。 由于纹理是由灰度在空间位置上反复出现而形成的,因而在图像空间中像个某距离的两像素之间会存在一定的灰度关系,即图像中灰度的空间相关特性。...(a,b)取值要根据纹理周期分布的特性来选择,对于较细的纹理,选取(1,0)、(1,1)、(2,0)等小的差分值。
前言 前面我们学习了《C++ OpenCV特征提取之基本的LBP特征提取》,用的是基本的LBP特征的提取,这次我们接着上次的代码,来看看扩展的ELBP的特征提取。...圆形LBP算子 基本的LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。...如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。...例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。...上图为值为17时 可以看到,扩展的LBP算法比基本的LBP特征提取的更为明显一些。关键代码里面的写法不太好理解,我里面也有一知半解的东西,也是先做了后再研究吧。
自然语言中意义最小的单位就是单词,其次是句子,再是段落,最后一整篇文章。 通常来说,提取单词的特征是最常用的提取方法。...当然,特征提取也是根据你看问题的角度的来决定,也就是说你要解决的问题以及解决问题的模型所决定的。 下面我们仅仅从单词角度来看问题来说说两种常见的特征表示的方法。 词袋: 最简单的是一种叫做词袋的特征。
已经广泛的应用于纹理分类、纹理分割、人脸图像分析等领域。...介绍 局部二值模式(Local binary patterns,LBP)是机器视觉领域中用于描述图像局部纹理特征的算子,具有旋转不变性和灰度不变性等显著的优点。它是由T....Harwood [1][2]在1994年提出,LBP在纹理分类问题上是一个非常强大的特征;如果LBP与HOG结合,则可以在一些集合上十分有效的提升检测效果。LBP是一个简单但非常有效的纹理运算符。...由于其辨别力强大和计算简单,局部二值模式纹理算子已经在不同的场景下得到应用。LBP最重要的属性是对诸如光照变化等造成的灰度变化的鲁棒性。
HOG特征描述子提取 灰度图像转换 梯度计算 分网格的梯度方向直方图 块描述子 块描述子归一化 特征数据与检测窗口 匹配方法 函数API C++: gpu::HOGDescriptor::HOGDescriptor
Brute Force匹配是opencv二维特征点匹配常见的办法,BFMatcher总是尝试所有可能的匹配,从而使得它总能够找到最佳匹配,这也是Brute Fo...
KAZE是EECV 2012年新提出来的特征点检测和描述算法,AKAZE是在KAZE基础上进行改进的,OpenCV3.x版本也已经集成了这个算法,相对说Surf...
前言 前一章我们介绍过《C++ OpenCV特征提取之KAZE检测》KAZE的检测,里面说到过KAZE是EECV 2012年新提出来的特征点检测和描述算法,AKAZE是在KAZE基础上进行改进的,所以OpenCV3
同理积分图像中的B(x2,y1)、C(x1,y2)、D(x2,y2)点值分别是绿色、紫色和黄色区域像素值的累加和。ABCD四点的位置关系在右下角图所示。 ?...即:D-C-B+A。显然,计算量不受区域尺寸的影响。所以,如果需要在多个尺寸的区域上计算像素累加和,最好采用积分图像。
前言 前面我们学了《C++ OpenCV特征提取之BFMatcher匹配》BFMatcher的匹配,这一章我们看一下FLANN的特征匹配。
前言 前面我们介绍了《C++ OpenCV特征提取之SURF特征检测》,这一篇我们在介绍一下SIFT的特征提取。
选择图像中的POI(Points of interest) Hessian Matrix 在不同的尺度空间发现关键点,非最大信号压制 发现特征点方法、旋转不变性要求 生成特征向量 SURF构造函数介绍 C+
我们正带领大家开始阅读英文的《CUDA C Programming Guide》,今天是第15天,我们用几天时间来学习CUDA 的编程接口,其中最重要的部分就是CUDA C runtime.希望在接下来的...每次纹理拾取, 需要对纹理对象API提供一个纹理对象, 或者对纹理引用API提供一个纹理引用,纹理引用是老API,纹理对象是新API。OpenCL中相对CUDA的, 只有纹理对象。...纹理引用有很多缺点, 例如只能全局变量, 不能作为参数之类的。 后来CUDA从某个版本起, 加入了纹理对象这一套,但以前的老代码还是兼容的, 老纹理引用的也能用。用不用都可以。反正手册上两个都有。...(以及, 很久很久之前大家用纹理是因为纹理还自带一个纹理缓存,而1.X的硬件无缓存, 例如内部的L1之类的, 但是却有纹理缓存,性能更好),但是现在已经无所谓了,特别是较新的卡(Maxwell+),纹理缓存已经和普通的访存用的缓存合并了...因此现在你无论是直接读取, 还是用纹理读取, 都能享受到。但纹理的其他特性, 例如CUDA Array的元素安排方式所带来的加速,纹理自动边界处理, 自动坐标映射, 自动值映射,这些就享受不到了。
C语言的开发场景: 应用软件 主要包含各种软件如:QQ,百度网盘,游戏 (上层) 操作系统 windows/macOS/Linux (下 电脑硬件 ...层) C语言是一个擅长底层开发的语言。...而C语言的主要编译器有:Clang/GCC/MSVS。
算法基本思想是使用一个固定窗口在图像上进行任意方向上的滑动,比较滑动前与滑动后两种情况,窗口中的像素灰度变化程度,如果存在任意方向上的滑动,都有着较大灰度变化,...
一.C语言是什么?...语言大致可以分为自然语言和计算机语言,自然语言就是人与人日常交流的语言,如汉语、英语、日语等等,计算机语言又可以分为机器语言、汇编语言、高级语言,C语言就是一个高级语言 机器语言:就是由二进制01组合起来的计算机可以直接识别的程序语言是一种面向机器的语言...,比起低级语言易懂易学,可移植性好,编程效率高,但是执行效率没有低级语言高,需要经过编译或解释,C语言就是采用编译的一种高级语言 二.为什么选择C语言 C语言常年霸榜各类高级语言前三,属于基础必学的语言...,其功能强大,而且许多语言都很相似,如果学好C语言,对学习其他语言也有很大帮助 三.编译器的选择 C语言是一门编译型的语言,需要依赖编译器将计算机语言转换成机器能够执行的机器指令 常见的编译器有:msvc...+文件,这里没有C文件选项,因为C++和C基本不分家,将后缀名.cpp改为.c就可以了,创建好后就可以开始写我们的第一个C语言程序了 注意:其中.c的文件叫源文件,.h的文件叫头文件(head),后面会慢慢讲到
领取专属 10元无门槛券
手把手带您无忧上云