首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    DreamSparse: 利用扩散模型的稀疏图的新视角合成

    最近的工作开始探索稀疏视图新视图合成,特别是专注于从有限数量的具有已知相机姿势的输入图像(通常为2-3)生成新视图。其中一些试图在 NeRF 中引入额外的先验,例如深度信息,以增强对稀疏视图场景中 3D 结构的理解。然而,由于在少数视图设置中可用的信息有限,这些方法难以为未观察到的区域生成清晰的新图像。为了解决这个问题,SparseFusion 和 GenNVS 提出学习扩散模型作为图像合成器,用于推断高质量的新视图图像,并利用来自同一类别内其他图像的先验信息。然而,由于扩散模型仅在单个类别中进行训练,因此它在生成看不见的类别中的对象时面临困难,并且需要对每个对象进行进一步的提炼,这使得它仍然不切实际。

    04

    ICLR 2022 under review | 从零开始生成三维分子几何结构的自回归流模型

    今天给大家介绍的是ICLR2022上underreview的文章《An autoregressive flow model for 3d molecular geometry generation from scratch》。虽然目前已经开发了多种方法来生成分子图,但从零开始生成分子的三维几何结构问题并没有得到充分的探索。在这项工作中,作者提出了G-SphreNet,一种生成三维分子几何的自回归流模型。G-SphereNet采用了一种一步步将原子放置在三维空间上灵活的顺序生成方案,它并不直接生成三维坐标,而是通过生成距离、角度和扭转角来确定原子的三维位置,从而确保不变性和等变性。此外,作者建议使用球形信息传递和注意力机制进行条件信息提取。实验结果表明,G-SphreNet在随机分子几何结构生成和目标分子发现任务方面优于以往的方法。

    02

    机器人碰撞检测方法形式化

    为应对更为复杂的任务需求, 现代机器人产业发展愈发迅猛. 出于协调工作的灵活性、柔顺性以及智能性等多项考虑因素, 多臂/多机器人充分发挥了机器人的强大作用, 成为现代机器人产业的重要研究热点. 在机器人双臂协调运行当中, 机械臂之间以及机械臂与外部障碍物之间容易发生碰撞, 可能会造成财产损失甚至人员伤亡. 对机器人碰撞检测方法进行形式化验证, 以球体和胶囊体形式化模型为基础, 构建基本几何体单元之间最短距离和机器人碰撞的高阶逻辑模型, 证明其相关属性及碰撞条件, 建立机器人碰撞检测方法基础定理库, 为多机系统碰撞检测算法可靠性与稳定性的验证提供技术支撑和验证框架.

    04

    基于图割优化的多平面重建视觉 SLAM(ISMAR2021)

    作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。

    03

    24年最新综述 | 几何图神经网络

    几何图是一种具有几何特征的特殊图形,对于建模许多科学问题至关重要。与通用图不同,几何图通常展现出物理对称性,如平移、旋转和反射,使得现有的图神经网络(GNNs)处理它们时效率不高。为了解决这个问题,研究人员提出了多种具有不变性/等变性属性的几何图神经网络,以更好地表征几何图的几何性和拓扑结构。鉴于该领域当前的进展,进行一项关于几何GNNs的数据结构、模型和应用的全面综述是必要的。在本文中,基于必要但简洁的数学预备知识,我们提供了一个从几何消息传递角度对现有模型的统一视角。此外,我们总结了应用及相关数据集,以便于后续研究方法开发和实验评估的研究。我们还在这篇综述的最后讨论了几何GNNs的挑战和未来潜在发展方向。

    01

    SuperLine3D:从3D点到3D线

    这个工作来自于浙江大学和DAMO academy。在点云配准领域,尽管已经有很多方法被提出来,但是无论是传统方法,还是近年来蓬勃发展的基于深度学习的三维点云配置方法,其实在真正应用到真实的LiDAR扫描点云帧时都会出现一些问题。造成这种困窘的一个主要的原因在于LiDAR扫描到的点云分布极不均匀。具体而言,相较于RGBD相机,LiDAR的有效扫描深度要大很多。随着深度的增大,其激光发射出去的扇面将会变得稀疏。因此,即使是扫描同一目标或场景的点云帧之间,其尺度并不一致。导致想要研究的关键点周围的邻域点分布也存在较大不同,难以通过这些3D点的特征描述关联起点云帧。这个问题一直以来都十分棘手。这个工作独辟蹊径,提出对于这种点云数据,不再通过3D点来构建关联以实现点云配准,而是研究点云数据中的高层次的几何原语。这种做法直观来说是有道理的,因为这些高层次的几何原语通常会有较大的支撑点集,换句话说,其对于点云扫描和采样具有较大的鲁棒性,通常不会因为某个点没有被记录而影响相应几何原语的提取。同时,几何原语通常具有更具体的特征和几何结构,例如一条直线、一个平面等,其更容易构建不同帧间的关联,避免误匹配。但是,这种研究思路通常难度较大,原因在于缺乏足够的有标签的数据集。在这种情况下,这个工作显得极其重要,它不仅仅提供了一个数据集自动标注模型,同样也是少数真正开始探索几何原语用于点云配准任务的先河性的工作。

    02

    基于变分自编码器的静息态fMRI数据的表征学习

    静息状态功能性磁共振成像(rsfMRI)数据显示出复杂但结构化的模式。然而,在rsfMRI数据中,潜在的起源是不清楚的和纠缠的。在这里,我们建立了一个变分自编码器(VAE),作为一个生成模型可用无监督学习训练,以解开rsfMRI活动的未知来源。在使用人类连接组项目(Human ConnectomeProject)的大量数据进行训练后,该模型学会了使用潜在变量表示和生成皮层活动和连接的模式。潜在表征及其轨迹表征了rsfMRI活动的时空特征。潜变量反映了皮层网络潜轨迹和驱动活动变化的主梯度。表征几何学捕捉到潜在变量之间的协方差或相关性,而不是皮质连通性,可以作为一个更可靠的特征,从一个大群体中准确地识别受试者,即使每个受试者只有短期数据可用。我们的研究结果表明,VAE是现有工具的一个有价值的补充,特别适合于静态fMRI活动的无监督表征学习。

    02

    基于图割优化的多平面重建视觉 SLAM(ISMAR2021)

    作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。

    01

    Michael Brostein 最新几何深度学习综述:超越 WL 和原始消息传递的 GNN

    来源:AI科技评论本文约8500字,建议阅读15+分钟本文叫你如何突破基于 WL 测试和消息传递机制的 GNN 的性能瓶颈。 图可以方便地抽象关系和交互的复杂系统。社交网络、高能物理、化学等研究领域都涉及相互作用的对象(无论是人、粒子还是原子)。在这些场景下,图结构数据的重要性日渐凸显,相关方法取得了一系列初步成功,而一系列工业应用使得图深度学习成为机器学习方向的热门研究话题之一。 图注:通过图对复杂系统的关系、交互进行抽象。例如,「分子图」中构成分子的原子至今的化学键,「社交网络」中用户之间的关系和交

    02

    甘利俊一 | 信息几何法:理解深度神经网络学习机制的重要工具

    智源导读:深度学习的统计神经动力学主要涉及用信息几何的方法对深度随机权值网络进行研究。深度学习技术近年来在计算机视觉、语音识别等任务取得了巨大成功,但是其背后的数学理论发展却很滞后。日本理化所的Shun-ichi Amari先生(中文:甘利俊一)近期在北京智源大会上发表了题为《信息几何法:理解深度神经网络学习机制的重要工具》的演讲。在演讲中,甘利先生梳理了人工神经网络研究的部分重要历史事件,分享了近两年在深度学习理论的一些最新研究成果,指出统计神经动力学方法可以为理解深度学习提供重要的理论工具。

    03

    GNN for Science: 腾讯AI Lab、清华共同发文综述等变图神经网络

    机器之心专栏 腾讯AI Lab, 清华AIR&计算机系 一文了解等变图神经网络的结构和相关任务。 近年来,越来越多的人工智能方法在解决传统自然科学等问题上大放异彩, 在一些重要的学科问题(例如蛋白质结构预测)上取得了令人瞩目的进展。在物理领域的研究中,非常多的物理问题都会涉及建模物体的的一些几何特征,例如空间位置,速度,加速度等。这种特征往往可以使用几何图这一形式来表示。不同于一般的图数据,几何图一个非常重要的特征是额外包含旋转,平移,翻转对称性。这些对称性往往反应了某些物理问题的本质。因此,最近以来,大量

    04
    领券