首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    社交网络分析的 R 基础:(一)初探 R 语言

    3 年的硕士生涯一转眼就过去了,和社交网络也打了很长时间交道。最近突然想给自己挖个坑,想给这 3 年写个总结,画上一个句号。回想当时学习 R 语言时也是非常戏剧性的,开始科研生活时到处发邮件要源代码,发完最后一封本以为又是无功而返,很意外的收到了秒回的邮件,邮件中附上了由 R 语言编写的实验代码。当时过于开心,因为终于有热心的作者回复了,以至于没有仔细考虑,想都没想对着满是警告的代码开始了 R 语言学习之旅。之后的几天陆陆续续的收到了其他作者的回复,实验代码多是使用 Python 构建的,好吧只能咬咬牙继续了。当时的学习苦于资料太少,唯一的参考只有那份 R 语言实验代码,因此萌生了写一份站在社交网络分析角度的 R 语言教程。《社交网络分析的 R 基础》中所介绍的内容都是最新的技术,Visual Studio Code 在半年之前甚至无法调试 R 语言,代码规范遵循 Google's R Style Guide。该系列博客一共包含六篇文章,具体的目录如下:

    01

    生信爱好者周刊(第 61 期):基因对寿命的影响

    @NiEntropy - 想到了生物课本中的一句话:生物的性状是由基因决定的,而基因的表达受环境因素影响;想到了秦始皇炼丹渡海寻仙求长生,Google投资Calico专注衰老研究。从古至今,人类一直在追寻着长寿,而在日复一日的生活中,我更感兴趣未来会是什么样?是像《赛博朋克:边缘行者》中“低端生活与高等科技结合”的悲剧,还是我们共同的理想:在高度发达的社会生产力和广大共识范围,人们科学文化水平和思想觉悟,道德水平极大提高的基础上,实行各尽所能、按需分配原则的劳动者有序自由联合的社会经济形态。未来源于当下,还是要脚踏实地把当下的工作干好。

    03

    六个主要的社会网络分析软件的比较

    UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一 起的还有Pajek、Mage和NetDraw等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含 网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和KrackPlot等软件作图。UCINET包含大量包括探测 凝聚子群(cliques, clans, plexes)和区域(components, cores)、中心性分析(centrality)、个人网络分析和结构洞分析在内的网络分析程序。UCINET还包含为数众多的基于过程的分析程序,如 聚类分析、多维标度、二模标度(奇异值分解、因子分析和对应分析)、角色和地位分析(结构、角色和正则对等性)和拟合中心-边缘模型。此外,UCINET 提供了从简单统计到拟合p1模型在内的多种统计程序。

    02

    基于图论的复杂脑网络分析中的常用指标

    目前,基于图论的复杂脑网络分析技术是当前脑科学研究的热点,在脑科学领域的应用是复杂脑网络理论的一个重要分支。不论你的研究技术采用的是EEG、MEG、fMRI还是DTI,不论你研究的正常的大脑高级认知过程还是诸如精神分裂等疾病的脑功能/结构异常变化,复杂脑网络技术都可以作为一个十分强大的分析工具应用于上述情况。目前,大量的研究成果已经证明,大脑既不是一个完全的随机网络(random network),也不是一个完全的有序网络(regular network),而是具有“经济性的”小世界网络特性。所谓的小世界网络(Small-word network),是指其具有较小的特征路径长度L和较大的聚类系数C,换句话说,小世界网络的L、C处于有序网络和随机网络之间。由于运用复杂脑网络分析技术需要一定的数学基础和对图论较好的理解,使得很多研究者对复杂脑网络理论望而却步。这里,小编以较为通俗的语言给大家介绍几个复杂脑网络分析中的常用指标,以期和大家共同学习、共同进步。

    00

    答读者问:非计算机专业的学生如何学习数据分析

    大家好,大数据文摘愿意在力所能及的范围内,解答读者问题。本期提问是大三的学生,南瓜灯。也欢迎大家在文末“写评论”处写出你的看法、答复、新问题。如果你的问题有足够的普遍性、代表性,也许下期就能入选。 本期问题 提问人:南瓜灯 问题描述:你好,我是学市场营销专业的学生,现在大三,由于读了大数据时代这本书,对大数据及数据分析非常有兴趣,而且现在大数据分析得到国家支持,同时各行业大数据浪潮也将到来,而且通过数据分析,可以把原本两个完全没有关联的商品通过销售数据的分析,得到两者之间的关联,感觉非常的奇妙,以后也想立志

    05

    ucinet网络分析实例(网络分析app)

    UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一起的还有Pajek、Mage和NetDraw等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含 网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和KrackPlot等软件作图。UCINET包含大量包括探测凝聚子群(cliques, clans, plexes)和区域(components, cores)、中心性分析(centrality)、个人网络分析和结构洞分析在内的网络分析程序。UCINET还包含为数众多的基于过程的分析程序,如聚类分析、多维标度、二模标度(奇异值分解、因子分析和对应分析)、角色和地位分析(结构、角色和正则对等性)和拟合中心-边缘模型。此外,UCINET提供了从简单统计到拟合p1模型在内的多种统计程序。

    02
    领券