人脸识别是目前商业应用最成熟、最广泛的人工智能技术之一,成为开发者、企业接入AI能力的首选。
云端人脸识别平台方案虽然看起来美好,但是当没有网络的时候呢?当需要控制硬件成本的时候呢?离线则成为人工智能技术落地的关键,这也是将AI从云到端的唯一方式。 当GMIC遇上视觉AI “黑科技”酷炫又好玩
近年来物联网技术快速发展,每一项技术革新,对事物发展都会有巨大促进作用。物联网技术在智能门禁上广泛应用,智能门禁发展如何,对智慧社区建设具有重要影响。在过去智能门禁人脸识别效率低,受网络稳定性影响大。离线式人脸识别技术出现,大大提高了人脸识别效率,及安全性。离线式人脸识别技术,为智慧社区发展提供了强大的活力。
AlphaGo拔掉网线也强大、iPhone X没有网络依旧可解锁,在国内虹软则免费开放了其支持离线的人脸识别技术,而且除了检测、跟踪、识别功能,现在也支持对年龄与性别的识别。 在杭州举行的虹软AI技术
前段时间有同学在DotNetGuide技术社区交流群提问:.NET做人脸识别功能有什么好的解决方案推荐的吗?今天大姚给大家推荐2款.NET开源、免费、跨平台、使用简单的人脸识别库,希望可以帮助到有需要的同学。
人工智能技术的飞速发展给各行各业都带来了深远的影响,AI已被视为企业提升运营效能、应对市场竞争的必经之路。然而对于一些企业而言,让AI真正实现落地和应用,并且创造价值,仍是一件需要努力的事情。
AI 研习社按,在「燎原计划 2018」暨百度 AI 开发者实战营第二季北京站上,百度发布了三项重大消息:开放 EasyDL 平台、发布「深度学习工程师评价标准」、人脸识别全部接口面向中小企业与开发者将永久免费,为 AI 开发者带来了大量福利。
一、功能特点 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。 在线版的协议支持百度、旷视,离线版的支持百度,可定制。 除了支持X86架构,还支持嵌入式linux比如contex-A9、树莓派等。 每个功能的执行除了返回结果还返回执行用时时间。 多线程处理,通过type控制当前处理类型。 支持单张图片检索相似度最高的图片。 支持指定目录图片用来生成人脸特征值文件。 可设置等待处理图片队列中的数量。 每次执行都有成功或者失败的信号返回。 人脸搜索的返
上一篇文章写了在线调用人脸识别api进行处理,其实很多的客户需求是要求离线使用的,尤其是一些事业单位,严禁这些刷脸数据外泄上传到服务器,尽管各个厂家号称严格保密这些数据,但要阻止这些担心,唯一的解决办法就是设备离线使用,连个屁的网,不联网看你怎么上传,于是离线的人脸识别应用应运而生,比如我们手机上的识别就是本地库在运算,至于本地模型库估计会联网更新,以保持最新的状态。百度的离线人脸识别做的还行,看官网的sdk开发包,更新也是蛮快的,提供了windows、linux、android等版本。
关于人脸识别这块,前些年不要太火,哪怕是到了今天依然火的一塌糊涂,什么玩意都要跟人脸识别搭个边,这东西应该只是人工智能的一个很小的部分,人脸识别光从字面上理解就是识别出人脸区域,其实背后真正的处理是拿到人脸区域图片,提取人脸特征值,再用这些特征值去做比对分析处理,识别出到底是谁,国内厂家也不少,比拼的就是准确度误报率,速度无非就是靠堆硬件来,什么VPU各种并行运算都堆上去,速度杠杠的,好多厂家都做到了几个毫秒的级别,估计很多厂家都是在开源的基础上加上了自家的算法,一直跑呀跑的整出了符合自家算法的人脸模型文件,比如百度的人脸识别模型文件,经过好几年的发展,越来越大越来越细越来越准。
关注腾讯云大学,了解最新行业技术动态 戳【阅读原文】查看55个腾讯云产品全集 一、课程概述 腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。可应用于智慧零售、智慧社区、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 【课程目标】 快速了解腾讯云人脸识别产品 了解腾讯云人
来源 | 腾讯SaaS加速器首期项目-三体云动 ---- 刚刚结束的五一假期,全国共计接待国内游客1.15亿人次,实现国内旅游收入475.6亿元,第三产业正在逐步复苏。随着北京体育健身场所有序开放,意味着全国的体育健身场所基本已全部恢复营业。 过去3个月,三体云动持续加大研发力度,不仅更新了SaaS系统功能,还增加了AIoT产品的新功能,不仅解决了广大线下场馆复工后面临的问题,还为场馆运营提高效率,提升用户体验。 教练可帮会员约课啦! 三体云管家App最近上线了独立代预约功能,如果会员想健身,但没
4月13日结束的计算机视觉沙龙圆满落幕。本期沙龙从构建图像识别系统的方法切入,讲述腾讯云人脸识别、文字识别、人脸核身等技术能力原理与行业应用,为各位开发者带来了一场人工智能领域的技术开拓实践之旅。下面是范锦老师关于腾讯云人脸识别系统在传统行业的应用与落地的总结。
申请步骤 在申请离线识别 SDK 前,如您的账号未进行实名认证,需要您先完成实名认证(企业或个人账号均可),并通过审核。 审核通过后,进入人脸识别控制台 > 离线识别 SDK 管理 页面,单击【立即申请】填写相关申请信息。 按实际情况填写离线 SDK 申请表,提交并审批通过后,即可下载 SDK 测试。 在线绑定设备号 image.png 测试授权 下载 SDK 包前操作:申请通过后,单击 SDK 列表进入详情页,在详情页单击页面头部“绑定设备”TAB 页,复制页面顶部的 APPID 和 SECRETKEY
https://cloud.tencent.com/document/product/867/44383
How-Old.net 我想我不用介绍了,最近可谓是火了半边天了。 FACE++ 是北京旷视科技有限公司旗下的新型视觉服务平台,Face++平台通过提供云端API、离线SDK、以及面向用户的自主研发产品形式,将人脸识别技术广泛应用到互联网及移动应用场景中,人脸识别云计算平台市场前景广阔。 --摘自百度百科 我不太清楚微软的人脸识别的接口,但是对于国内的FACE++我还是稍微了解一点的。 根据百度百科的显示: 2013年10月16日,Face++ v3.0 版本上线,在这一版本中将人脸识别 API 免
https://cloud.tencent.com/act/event/iaidemo
人脸识别是一种能够从图像或视频源的视频帧中实时识别或验证人的技术。本文分享四个开源人脸识别项目,以提高你在数据科学领域的技能。
然后输出两张图片的差异值--如果你放进同一个人的两张照片,你希望他能输出一个很小的值,如果你放进两个长相差别很大的人的照片
上一篇文章写道人脸识别客户端程序,当然要对应一个服务端程序,客户端才能正常运行,毕竟客户端程序需要与服务端程序进行交互他才能正常工作。通常人脸识别服务端程序需要和人脸识别的相关处理库在一起,这样他接收到相关的处理需求以后比如人脸识别的处理请求,需要调用本地的人脸识别库来处理,处理完成以后拿到结果,再组成协议的格式返回给客户端程序。
前言 一个群友用琨君的美颜录制和讯飞离线人脸识别SDK做了一个demo,功能是录制视频,要求有美颜,并且能识别人脸并放置贴图。但是遇到一个问题: 录制过程能过进行人脸识别,也有美颜效果; 但是录制
-欢迎 原文该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员。有了世界上最简单的人脸识别库,使用 Python 或命令行,即可识别和控制人脸。该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。这也提供了一个简单的 face_recognition 命令行工具,你可以打开命令行中任意图像文件夹,进行人脸识别! 1.找出下面图
为人脸登录提供人脸注册集合,基于人脸进行无动作活体检测、及后台在线活体检测算法,判断用户为真人,保障业务环节中的用户真实性判断。
人脸识别客户端程序,不需要和人脸识别相关的库在一起,而是通过协议通信来和人脸识别服务端通信交互,人脸识别客户端和服务端程序框架,主要是为了提供一套通用的框架,按照定好的协议,实现人脸识别的相关处理,很多厂家都会有也都会做类似的机制,以便第三方厂家或者自家的其他设备按照这个通信协议来处理,比如客户端程序可以在PC机上,也可以是网页,还可以是安卓客户端,前端设备比如人工访客机,访客机本地是不需要做人脸识别等处理的,而是发送到服务端处理完以后再拿到结果进行展示,这样就可以利用服务端强大的运算能力。
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如上的发展趋势可以知道,现在的主要研究方向
如果你觉得好的话,不妨分享到朋友圈。 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如
github源码:https://github.com/ageitgey/face_recognition#face-recognition 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。
【导读】本文是Stephanie Kim的一篇博文你,作者探讨的是一个老生常谈的话题“人脸识别”,介绍针对人脸识别任务的一个特定的开源库——OpenFace。作者之所以专门介绍该开源库,说明该库必然是
一个好的通信框架,必然是支持双工通信的,同时它能够对半包黏包进行处理,方便高效的编解码、序列化,拥有心跳超时机制,同时支持大量连接并发,方便调用。而这个通信的过程,我始终是觉得它的起源是三次握手和四次挥手。它们影响着消息中间件和通信框架以及SOA框架的发展。
人工智能时代快速来临,其中人脸识别是当前比较热门的技术,在国内也越来越多的运用,例如刷脸打卡,刷脸APP,身份识别,人脸门禁等。当前的人脸识别技术分为WEBAPI和SDK调用两种方式,WEBAPI需要实时联网,SDK调用可以离线使用。
在科幻电影里,主人公进入秘密基地的识别技术一直在不断升级,从按密码的传统方法,到刷“手指”、刷“人脸”,再到更有未来感的虹膜识别,汤姆·克鲁斯在《碟中谍》还有《少数派报告》中,都在利用自己的虹膜领任务、确认身份……
该文内容较老,但对入门者还是有很强的学习意义,可以了解人脸识别的历程与技术发展。 人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小;对于跟踪而言,还需要确定帧间不同人脸间的对应关系。 1.Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004. 入选理由: Viola的人脸检测工作使得人脸检测真正变得实时可用。他们发表了一系列文章,这篇是引用率最高的一篇。 2.Fast rotatio
早在上个世纪90年代的时候,LeCun等研究人员就开始利用神经网络陆续进行一些研究,比如我们熟知的大名鼎鼎的LeNet5,但这绝不是唯一,今天我们来说他们的另一种网络结构,Siamese Network,网络细节我们后面这些,这里先说应用背景。
选自Github 机器之心编译 参与:路雪 仅用 Python 和命令行就可以实现人脸识别的库开源了。该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。 该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员。 有了世界上最简单的人脸识别库,使用 Python 或命令行,即可识别和控制人脸。 该库使用 dlib 顶尖的深度学习人
一人一档是人脸监控识别中一个终极核心技术,它是核心算法和大数据产生的结果。通过一人一档可以做很多事情,例如动态人脸识别、目标检索、目标轨迹、关系网络认可。 2018 年 3 月 31 日,由雷锋网主办
在人脸识别到以后,需要在实时视频上将所有人脸框绘制出来,一把来说识别人脸会有多种选择,一个是识别最大人脸,这种场景主要用于刷脸门禁,还有一种是识别所有人脸,这种场景主要用于人脸识别摄像机,就是将画面中的所有人脸识别出来发给服务器,人脸框的数据主要是四个参数,左上角和右下角的位置,也可以说是x、y、width、height,可能有些做的比较好的还有倾斜角度,这个意义不是很大,人脸识别的速度一般都是飞快的,就算你用学习上用的opencv做识别也是非常快的,基本上都是毫秒级的响应,主要的耗时操作在特征值的提取,所以一般要求能够响应每个通道每秒钟25帧-30帧的画面绘制+人脸框的绘制,当然人脸框的数据可能会有多个。
前段时间很多用户咨询我们TSINGSEE青犀视频全线产品能否实现人脸识别,那时候对人脸识别的研究我们也才处于起步状态,目前我们在EasyCVR视频上云网关上已经开始搭建的人脸识别的环境,本文就和大家分享一下。
大概几年前搞过一套嵌入式linux上的人脸识别程序,当然人脸识别的核心算法并不是自己开发的,关于人脸识别算法这一块,虽然有众多的开源库可以用,甚至还可以用opencv搞算法训练深度学习之类的,个人认为始终达不到准确度的要求,尤其是人脸比对的准确度,这个需要专业的人脸训练模型才行。目前市面上绝大部分的人脸识别库提供的都是X86的或者安卓ios的库,并没有嵌入式linux的库,估计一方面因为嵌入式linux跑的板子性能比较低,还有一个就是依赖特定编译器,版本众多难以提供,市场也小,所以大部分的厂家都没有提供嵌入式linux的开发包,这个就比较鸡肋,所以很多终端厂家最终弃用linux而选用安卓作为载体系统,这样就可以用上高大上的人脸识别库了,比如萤火虫开发板,RK3288 RK3399等。
导读/ Introduction 近期,国际机器学习大会(ICML)、国际数据挖掘与知识发现大会(KDD)、国际计算机协会信息检索大会(SIGIR)等机器学习、数据挖掘与信息检索领域的国际顶级学术会议分别公布了论文录用结果,腾讯广告推荐团队的4篇论文被接收,涵盖神经网络模型剪枝、人脸识别、智能广告竞价、广告转化率预测等研究方向,研究成果获得国际权威认可。 腾讯广告推荐团队基于腾讯广告多流量(微信、QQ、新闻、视频、以及外部优量汇联盟等),多行业(游戏,电商,教育,金融),多模态(图片,视频,短视频)的
今天我们“计算机视觉研究院”深入解读优图的“分布式知识蒸馏损失改善人脸识别困难样本”技术。上一期我们也详细分享了什么是“知识蒸馏”技术!(链接:腾讯优图 | 分布式知识蒸馏损失改善困难样本)
本系列为吴恩达老师《深度学习专项课程(Deep Learning Specialization)》学习与总结整理所得,对应的课程视频可以在这里查看。
Robert Lorenz(德国籍),澎思科技资深算法研究员,德国柏林洪堡大学数学系博士,致力于人脸检测、人脸跟踪和人脸质量判断等领域的技术研发,尤其擅长模型构建和模型优化。其研究成果已经应用于澎思科技多种人脸识别软件平台和硬件产品中。同时也致力于视频结构化算法的研究和开发,负责数个子研究课题的攻坚工作。
选自Medium 作者:Norman Di Palo 机器之心编译 参与:路雪 本文介绍了如何使用 Python 在 Keras 框架上实现 FaceID,对 iPhone X 这一新解锁机制进行了反
消息队列,英文名:Message Queue,经常缩写为MQ。从字面上来理解,消息队列是一种用来存储消息的队列 。来看一下下面的代码
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面。在界面中可以选择人脸图片、视频进行检测识别,也可通过电脑连接的摄像头设备进行实时识别人脸性别;可对图像中存在的多张人脸进行性别识别,可选择任意一张人脸框选显示结果,检测速度快、识别精度高。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。本博文目录如下:
点击上方蓝色字体,选择“设为星标” 回复”学习资料“获取学习宝典 前言 去年在公司参与了一个某某机场建设智能机场的一个项目,人脸登机是其中的一个功能模块,当时只是写了后台的接口,调用人脸识别设备的api,给闸机回传数据信号,以保障该功能的正常使用。 当时因为项目进度紧张,手里还有其他项目赶进度,也就没时间去分享这个功能的实现。前几天刷脸进公司大楼的时候,突然想起来应该写一个功能类似的demo分享个人的一些小小的经验。在当时项目中刷脸的设备终端是采购某某AI公司,当然咱们在demo里面也不可能买一台那东西
领取专属 10元无门槛券
手把手带您无忧上云