大家好,这里是NewBeeNLP。新闻阅读是人们日常生活中必不可少的活动,随着新闻逐渐从纸质端转变到电子端,大家可以从各种社交平台上进行新闻的阅读。同时,我们身处信息爆炸的时代,一天可能就有上万篇的新闻文章产生,这对于用户来说,会造成非常严重的信息过载的问题。
A Survey on Knowledge Graph-Based Recommender Systems
来源 | 微软研究院AI头条(公众号ID:MSRAsia) 编者按:我们几乎每天都会接收到各种各样的推荐信息,从新闻、购物到吃饭、娱乐。个性化推荐系统作为一种信息过滤的重要手段,可以依据我们的习惯和爱好推荐合适的服务。但传统的推荐系统容易出现稀疏性和冷启动的问题,而知识图谱作为一种新兴类型的辅助信息,近几年逐渐引起了研究人员的关注,本文将向大家介绍知识图谱的相关知识以及知识图谱在推荐系统中可能的应用价值。一起来学习一下吧! 小王是一名程序员。早上八点,他被闹铃叫醒,拿起手机开始浏览手机上的
之前在美团听过关于知识图谱和个性化推荐的一个讲座,接下来的几篇,我们将围绕讲座中提到的知识点,来介绍下知识图谱是如何同个性化推荐相结合的!本篇算是一个开篇吧,希望大家伙能够有一个基本的认识。
本文首先介绍了什么是旅游知识图谱,然后就旅游知识图谱的架构,构建,应用和未来几个方面展开讨论。
在推荐系统领域近几年的工作中,知识图谱被越来越多的应用进来。在推荐系统中引入知识图谱被验证会给user-item的预测效果带来比较明显的提升,一个主要原因在于通过知识图谱,可以挖掘到很多user-item历史交互行为中看不到的信息。知识图谱如何应用到推荐系统中呢?今天就给大家带来4篇顶会中典型的知识图谱应用到推荐系统的工作。
人工智能正逐步从感知智能迈向认知智能,其终极目标是让机器具备类似人类的思维逻辑和认识能力,特别是理解、归纳和应用知识的能力,而知识图谱在这里面起到了非常关键的作用。 所以,本期和大家分享5本知识图谱经典畅销著作和一场线上交流活动,希望能够帮助大家更加系统深入地了解这个领域,将其炉火纯青地运用到实践中! 知 识 图 谱 认真读一本书 1 book 《知识图谱:概念与技术》 简介:本书是一本系统介绍知识图谱概念、技术与实践的书籍。全书共5篇,由16 章构成,力求涵盖知识图谱相关的基本概念与关键技术。“基
说到推荐系统,就不得不面对数据稀疏和冷启动问题,怎么解决呢?美团这篇论文《Multi-Modal Knowledge Graphs for Recommender Systems》说,我们不仅要加数据,而且是各种类型的都加。很多论文提出了用知识图谱作为推荐系统的辅助信息,而忽视了文本和图像,美团这篇论文,是第一个把知识图谱,多模态,attention都用来构建推荐系统的。模型模型也很霸气,叫MKGAT。GNN,知识图谱,多模态,推荐体系统在这篇论文里应有尽有。
作为一个文科生,深知文化娱乐、旅游休闲、市场营销等领域正在迎接推荐算法的洗礼,传统的分析、内容生产,势必会发生改变。因此笔者一直关注技术领域,斥巨资(狗头保命
随着信息的爆炸性增长,构建能够理解、推理和应用知识的系统变得愈发重要。知识图谱作为一种结构化的知识表示方式,与自然语言处理(NLP)的结合将为构建更智能的系统打开崭新的可能性。本文将深入研究NLP在知识图谱中的应用,从基础概念到实际应用,揭示这一领域的发展趋势和潜在挑战。
导读:美团是一个生活服务领域的平台,需要大量知识来理解用户的搜索意图,同时对于商家侧我们也需要利用现有的知识对海量信息进行挖掘与提取,进而优化用户体验。今天分享的主题是知识图谱在美团推荐场景中的应用。主要包括以下几方面内容:
知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第二章课程《知识图谱基础知识》的15条精华研讨,来进一步学习了解知识图谱技术内幕。 本课程配套教材《知识图谱:概念
欢迎来到《每周NLP论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第十三章《基于知识图谱的搜索与推荐》的14条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回
👆点击“博文视点Broadview”,获取更多书讯 01 多模态简介 1.知识图谱的多模态数据来源 本节探讨多模态知识图谱的问题。前面曾多次提到,知识图谱的数据来源不仅仅是文本和结构化数据,也可以是图片、视频和音频等视觉或听觉形式的数据。多模态就是指视觉、听觉和语言等不同模态通道的融合。能够充分融合和利用语言、视觉和听觉等多种模态来源数据的知识图谱叫作多模态知识图谱。 一方面,凡是蕴含知识的原始数据都可以作为知识图谱构建的数据来源,例如对于图片,也需要完成类似于文本中的实体识别和关系抽取任务。另一方面,
作者:肖仰华 复旦大学计算机科学技术学院,副教授,博士生导师,上海市互联网大数据工程技术中心副主任。 主要研究方向为大数据管理与挖掘、知识库等。 大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的“喂养”下,人工智能技术获得了前所未有的长足进步。其进展突出体现在以知识图谱为代表的知识工程以及深度学习为代表的机器学习等相关领域。随着深度学习对于大数据的红利消耗殆尽,深度学习模型效果的天花板日益迫近。另一方面大量知识图谱不断涌现,这些蕴含人类大量先验知识的宝库却尚未被深度学习有效利用。融合
随着“互联网+”时代的到来,知识图谱被广泛应用于各大行业。在金融、医疗、教育、电商、能源等行业中,知识图谱都发挥了重要的作用。 在这些领域中,企业的业务数据就是企业中重要的资源之一。知识图谱将数据资产进行可视化呈现,可以帮助企业进行全局化管控、优化资源配置、提高工作效率。那么,知识图谱数据开发是什么?主要内容有哪些呢?
“为了支持城市复杂场景下各类需求,中科大脑知识图谱团队设计开发了一套包含本体可视化设计、数据映射、数据抽取、数据写入、图数据探索的一体化平台,而本文则详细介绍了他们的业务背景、技术选型、平台建设等内容。”
鞠建勋,携程度假AI研发团队资深算法工程师,主要负责携程度假自然语言处理相关的AI项目。硕士毕业于南京大学,有五年的自然语言处理经验,专注于自然语言处理和知识图谱方面的应用和算法研发。
作者 | Ccxs 整理 | NewBeeNLP 知识图谱 Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-Ranking Network 使用堆叠卷积和学生重排网络的具有鲁棒性的知识图谱补全 Poisoning Knowledge Graph Embeddings via Relation Inference Patterns 通过关系推理模式毒化知识图谱嵌入 PairRE: Knowledge G
二者展示的信息量是差不多的,但右边这种看起来更加直观。而且,随着文本篇幅的增长,这种优势会体现得更加明显。
本文解读的是 KDD 2020 论文《Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion》,作者来自北大、人大、西安电子科技大学。
会话推荐系统(conversation recommender system, CRS)旨在通过交互式的会话给用户推荐高质量的商品。通常CRS由寻求商品的user和推荐商品的system组成,通过交互式的会话,user实时表达自己的偏好,system理解user的意图并推荐商品。目前会话推荐系统有两个问题需要解决。首先,对话数据本身缺少足够的上下文信息,无法准确地理解用户的偏好(传统的推荐任务会有历史交互序列或者用户属性,但是该场景下只有对话的记录)。其次,自然语言的表示和商品级的用户偏好之间存在语义鸿沟(在user的话语“Can you recommend me a scary movie like Jaws”中,用户偏好反映在单词”scary“和电影实体”Jaws“上,但这两类信息天然存在语义的差异)。
论文标题: Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion
导读:知识图谱工程实践仅仅是迈向智能的第一步。丰富的结构化知识很有用,但是如何将这些符号化的知识融合应用到计算框架中仍然是一大挑战。通过与各类自然语言处理算法或模型结合,由知识驱动的显式事实知识和隐式语言表征,集成语言知识,才能发挥认知智能的威力,推动常识理解和推理能力的进步。
本节探讨多模态知识图谱的问题。前面曾多次提到,知识图谱的数据来源不仅仅是文本和结构化数据,也可以是图片、视频和音频等视觉或听觉形式的数据。多模态就是指视觉、听觉和语言等不同模态通道的融合。能够充分融合和利用语言、视觉和听觉等多种模态来源数据的知识图谱叫作多模态知识图谱。
肖仰华 复旦大学教授 复旦大学计算机科学技术学院,副教授,博士生导师,上海市互联网大数据工程技术中心副主任。主要研究方向为大数据管理与挖掘、知识库等。 大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的“喂养”下,人工智能技术获得了前所未有的长足进步。其进展突出体现在以知识图谱为代表的知识工程以及深度学习为代表的机器学习等相关领域。随着深度学习对于大数据的红利消耗殆尽,深度学习模型效果的天花板日益迫近。另一方面大量知识图谱不断涌现,这些蕴含人类大量先验知识的宝库却尚未被深度学习有效利用
知识图谱(图网络)在推荐系统中的重要性不言而喻,但并非所有关系都与目标推荐任务相关。为解决这一问题,本文介绍了名为DiffKG的新的知识图谱扩散模型,结合了生成扩散模型与数据增强范式,实现了鲁棒的知识图谱表示学习。
本课程从知识图谱的历史由来开展,讲述知识图谱与人工智能的关系与现状;知识图谱辐射至各行业领域的应用;在知识图谱关键技术概念与工具的实践应用中,本课程也会讲解知识图谱的构建经验;以及达观在各行业领域系统中的产品开发和系统应用。
说到人工智能技术,人们首先会联想到深度学习、机器学习技术;谈到人工智能应用,人们很可能会马上想起语音助理、自动驾驶等等,不过,在AIWorld 2017世界人工智能大会上,百度副总裁、AI技术平台体系(AIG)总负责人王海峰却没有讲这些,这次他聊的是知识图谱。 虽然你可能说不出知识图谱的具体定义,但其实每天都在使用它。当你在百度搜索时,搜索结果右侧的联想,就来自于知识图谱技术的应用;你问百度某个字怎么念,答案也来自知识图谱的应用;你和度秘聊天,问他詹姆斯和科比谁厉害、都取得了哪些成就等等,背后都是知识图谱
知识图谱是一种用图模型来描述知识和建模世界万物之间关联关系的技术方法。本文研究的是爱奇艺奇搜知识图谱的构建流程与应用场景,了解这一文娱行业知识图谱是如何帮助用户精确找到想要的内容、回答用户问题、以及理解用户搜索意图的。
10月31日,由北京智源人工智能研究院主办的2019北京智源大会在国家会议中心开幕,本次大会吸引到了国内外人工智能领域的顶级专家学者参与,他们围绕人工智能基础研究现状及面临的机遇和挑战、人工智能技术未来发展的核心方向等话题,展开了深入研讨。
前几天,谷歌发布了一个全新的书籍搜索产品:“Talk to Books”,用户可以通过对话的方式得到一本书籍的推荐,比如输入:“What is thebest programming language?”(什么是最好的编程语言?),就会被推荐《C Programming for Arduino 》。这个产品是典型的知识图谱技术的应用,它让搜索引擎可以理解用户的问题和每一本书的内容,进而进行精准匹配——就像有人在豆瓣给你荐书一样。事实上,知识图谱仍旧在驱动着已有20多年历史的搜索引擎进化。
知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建 、绘制和显示知识及它们之间的相互联系。知识图谱,是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域 以及整体知识架构达到多学科融合目的的现代理论。知识图谱,它能为学科研究提供切实的、有价值的参考。
知识图谱最早由谷歌发布,为了提升搜索引擎返回答案的质量以及用户查询的效率,在知识图谱辅助下,搜索引擎可以洞察到用户查询背后的一个语义信息,然后返回更为精准结构化的信息,从而更大可能的去满足用户的一个查询需求。
在当今信息时代,数据已经成为企业决策和业务发展的重要驱动力。然而,随着数据量的不断增加,传统的数据处理方法已经难以满足需求。知识图谱作为一种新兴的技术,正逐渐成为处理大规模数据的关键工具。本文将深入探讨知识图谱的数据处理流程,以及图数据库在这一领域的重要作用。
2016 年起,人工智能成为中国开发者重点关注的技术领域,以深度学习驱动的计算机视觉、自然语言处理、语音相关技术成为渗透最广的三个 AI 技术领域。然而,在这样的背景下,AI 仍是一个非常前沿的学科,对于中国开发者而言有很多需要克服的障碍,首当其冲的就是算法成熟度问题。此外,不同领域不同产业的 AI 应用场景复杂度与日俱增,给很多开发者树立了天然门槛。
while(1) { cout<<”Never Give Up”<<endl; }
采访嘉宾 | 彭力 作者 | 冬梅 随着互联网的发展,知识图谱和深度学习已广泛应用并影响了不同业务场景下数据获取及计算的方式。知识图谱已变为问答系统、商品推荐等智能应用的基础设施,为上层业务在语义理解和可解释性上提供了依据。其中知识计算是知识图谱构建的关键一环,将各类数据、知识、经验以及信息进行表示、分类、融合、建模将知识表达成更接近人类认知的结构。 为了进一步了解知识计算及知识图谱技术在小米业务场景下的探索和实践,在 AICon(北京站)前夕,InfoQ 有幸采访了小米人工智能部 / 知识图谱平台团队负
知识图谱最早由谷歌公司在2012年提出,其使用语义检索的方法从多种语言的数据源(例如FreeBase、维基百科等)收集信息并加工,以提高搜索质量、改善搜索体验。实际上,2006年Tim Berner-Lee就提出了Linked Data也就是一种在万维网数据上创建语义关联的方法。再往前追溯,语义链网络(Semantic Link Network)已经有了比较系统的研究,旨在创立一个自组织的语义互联方法来表达知识来支持智能应用,系统性的理论和方法可以参考H. Zhuge在2004年发表的《The Knowledge Grid》一文。
👆点击“博文视点Broadview”,获取更多书讯 在企业数字化、智能化转型的研发、生产、供应、销售、服务等诸多场景中,如何融合数据与专家知识,协同驱动业绩增长是一个多方关注,且难以解决的难题。 比如: 如何干预用户认知?企业应如何对针对不同用户群体,制定合适的北极星指标,生成并选择最优的策略,在不同场景中对用户群体进行干预,引导用户的认知变化,带来活跃与付费的业绩增长? 如何融合多方知识?企业应如何将业务需求知识、场景事理知识、用户、商品等业务目标知识进行关联与聚合,并被用户洞察分析、标签生产、数据平台
2017年,知识经济日益火爆,分答、知乎、得到等知识平台可谓如日中天。眼下这种火爆已在从人类延展到机器。互联网巨头纷纷对知识变得饥渴起来,知识成为数据之后的又一个香饽饽。 互联网巨头对知识越来越青睐 两三年来,互联网大佬言必谈数据,特别是大数据。曾有人戏称马云应该叫“Data Ma”,因为不懂技术的马云,十分钟爱谈大数据,马云的“五新理论”中有一个是“新能源”,其认为未来机器吃的不是电,而是数据。其外,李彦宏、马化腾等大佬关于大数据都有不少言论,马化腾说数据是AI应用的四大要素之一,李彦宏也提到:“由数据、
8月28日(周五)晚上7:30,知识工场实验室联合电子工业出版社博文视点荣幸邀请到南京大学计算机科学与技术系副教授、博导胡伟老师,为大家带来一场【基于表示学习的知识图谱实体对齐研究】精彩报告分享! 知识图谱前沿论坛系列直播 第4期 基于表示学习的知识图谱 实体对齐研究 8月25日(周五) 19:30 分享摘要 知识图谱以结构化的方式描述客观世界中概念、实体及其间的关系,将万维网上的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解万维网上海量信息的能力。知识图谱可以由任何机构和个人自
一、前言 这是系列博文《知识图谱实战开发案例剖析》第5部分:知识图谱的获取,第2节:国内外可用的知识图谱资源。该系列内容同时已经录制成视频课程,感兴趣的可以访问网易云课堂。 二、国际知识图谱可用资源 2.1 Google知识图谱资源
知识图谱(Knowledge Graph)的概念由谷歌2012年正式提出,旨在实现更智能的搜索引擎,并且于2013年以后开始在学术界和业界普及。目前,随着智能信息服务应用的不断发展,知识图谱已被广泛应用于智能搜索、智能问答、个性化推荐、情报分析、反欺诈等领域。本篇是『知识图谱构建与落地实践』的起始篇,我们与来自百度的NLP工程师路遥,一起研究知识图谱的构建流程与技术细节。
👆点击“博文视点Broadview”,获取更多书讯 基于电子商务平台上亿级的庞大商品库,电子商务交易得以不断增长。 为了更好地支持日常业务,需要将这些海量的商品以一种更优的方式进行描述、存储和计算,并且需要支持融合不同来源的数据,建立实体之间的语义连接,因此采用了知识图谱这种数据构架。 阿里巴巴积累了上千亿规模的商品数据作为商品知识图谱,这些数据来源于淘宝、天猫、阿里巴巴等在内的多个阿里旗下平台,囊括了品牌制造商、消费者、国家机构、物流提供商等多方利益相关者的数据。 从知识产权保护或购物体验的角度来看,商
AI 科技评论按:现在的市场环境下,企业正面临着竞争逐渐加剧、人力成本增加、人员流动率加快等挑战。而随着企业经历了信息化的成熟阶段,沉淀了大量的数据,大型的企业都开始了数字化转型,它们利用前沿的技术、海量的外部数据以及内部积累的业务数据上下游的关联客户,将数据转化为专家的经验知识,从而提高工作效率和产品销量,并增强产品的用户体验。而知识图谱,则在企业的数字化转型中扮演了重要的作用。
菜品是外卖交易过程的核心要素,对菜品的理解也是实现外卖供需匹配的重点。今天我们将一次推送三篇文章,系统地介绍了美团外卖美食知识图谱的构建和应用。《美团外卖美食知识图谱的迭代及应用》会介绍外卖知识图谱的体系全貌,包括菜品类目、标准菜品、美食基础属性和美食业务主题属性。《外卖商品的标准化建设与应用》将重点介绍外卖菜品标准化建设思路、技术方案和业务应用。由于外卖的业务特点是搭配成单,而《外卖套餐搭配的探索和应用》一文会针对性地介绍外卖套餐搭配技术的迭代以及应用实践。希望对从事相关工作的同学能够带来一些启发或者帮助。
领取专属 10元无门槛券
手把手带您无忧上云