首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    知识图谱研讨实录02丨肖仰华教授带你理清知识图谱基础知识

    知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第二章课程《知识图谱基础知识》的15条精华研讨,来进一步学习了解知识图谱技术内幕。 本课程配套教材《知识图谱:概念

    02

    知识图谱研讨实录10丨肖仰华教授带你读懂知识图谱的搜索推荐

    知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第十三章《基于知识图谱的搜索与推荐》的14条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回

    02

    中国人工智能学会通讯 | 当知识图谱“遇见”深度学习

    作者:肖仰华 复旦大学计算机科学技术学院,副教授,博士生导师,上海市互联网大数据工程技术中心副主任。 主要研究方向为大数据管理与挖掘、知识库等。 大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的“喂养”下,人工智能技术获得了前所未有的长足进步。其进展突出体现在以知识图谱为代表的知识工程以及深度学习为代表的机器学习等相关领域。随着深度学习对于大数据的红利消耗殆尽,深度学习模型效果的天花板日益迫近。另一方面大量知识图谱不断涌现,这些蕴含人类大量先验知识的宝库却尚未被深度学习有效利用。融合

    05

    KDD2020 | 基于互信息最大化的多知识图谱语义融合的会话推荐系统

    会话推荐系统(conversation recommender system, CRS)旨在通过交互式的会话给用户推荐高质量的商品。通常CRS由寻求商品的user和推荐商品的system组成,通过交互式的会话,user实时表达自己的偏好,system理解user的意图并推荐商品。目前会话推荐系统有两个问题需要解决。首先,对话数据本身缺少足够的上下文信息,无法准确地理解用户的偏好(传统的推荐任务会有历史交互序列或者用户属性,但是该场景下只有对话的记录)。其次,自然语言的表示和商品级的用户偏好之间存在语义鸿沟(在user的话语“Can you recommend me a scary movie like Jaws”中,用户偏好反映在单词”scary“和电影实体”Jaws“上,但这两类信息天然存在语义的差异)。

    03

    达观数据干货|复旦肖仰华 当知识图谱“遇见”深度学习

    肖仰华 复旦大学教授 复旦大学计算机科学技术学院,副教授,博士生导师,上海市互联网大数据工程技术中心副主任。主要研究方向为大数据管理与挖掘、知识库等。 大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的“喂养”下,人工智能技术获得了前所未有的长足进步。其进展突出体现在以知识图谱为代表的知识工程以及深度学习为代表的机器学习等相关领域。随着深度学习对于大数据的红利消耗殆尽,深度学习模型效果的天花板日益迫近。另一方面大量知识图谱不断涌现,这些蕴含人类大量先验知识的宝库却尚未被深度学习有效利用

    012

    百度饮得知识图谱的头啖汤!会让大家跟着吃鸡吗?

    2017年,知识经济日益火爆,分答、知乎、得到等知识平台可谓如日中天。眼下这种火爆已在从人类延展到机器。互联网巨头纷纷对知识变得饥渴起来,知识成为数据之后的又一个香饽饽。 互联网巨头对知识越来越青睐 两三年来,互联网大佬言必谈数据,特别是大数据。曾有人戏称马云应该叫“Data Ma”,因为不懂技术的马云,十分钟爱谈大数据,马云的“五新理论”中有一个是“新能源”,其认为未来机器吃的不是电,而是数据。其外,李彦宏、马化腾等大佬关于大数据都有不少言论,马化腾说数据是AI应用的四大要素之一,李彦宏也提到:“由数据、

    08

    阿里巴巴超大规模知识图谱预训练实践:商品分类

    👆点击“博文视点Broadview”,获取更多书讯 基于电子商务平台上亿级的庞大商品库,电子商务交易得以不断增长。 为了更好地支持日常业务,需要将这些海量的商品以一种更优的方式进行描述、存储和计算,并且需要支持融合不同来源的数据,建立实体之间的语义连接,因此采用了知识图谱这种数据构架。 阿里巴巴积累了上千亿规模的商品数据作为商品知识图谱,这些数据来源于淘宝、天猫、阿里巴巴等在内的多个阿里旗下平台,囊括了品牌制造商、消费者、国家机构、物流提供商等多方利益相关者的数据。 从知识产权保护或购物体验的角度来看,商

    01

    美团外卖美食知识图谱的迭代及应用

    菜品是外卖交易过程的核心要素,对菜品的理解也是实现外卖供需匹配的重点。今天我们将一次推送三篇文章,系统地介绍了美团外卖美食知识图谱的构建和应用。《美团外卖美食知识图谱的迭代及应用》会介绍外卖知识图谱的体系全貌,包括菜品类目、标准菜品、美食基础属性和美食业务主题属性。《外卖商品的标准化建设与应用》将重点介绍外卖菜品标准化建设思路、技术方案和业务应用。由于外卖的业务特点是搭配成单,而《外卖套餐搭配的探索和应用》一文会针对性地介绍外卖套餐搭配技术的迭代以及应用实践。希望对从事相关工作的同学能够带来一些启发或者帮助。

    03
    领券