由于用户和登录日期被设置为主键所以不需要再进行去重,下面看看如何快速求七日留存。(阅读原文可以直达CSDN本文链接)
Growth Hacking这个词在过去一两年开始迅速从硅谷传播到国内,也诞生了一系列专注于企业数据分析业务的明星初创公司,如GrowingIO,神策数据,诸葛IO等。Growth Hacking简单的来说就是用数据驱动的方式来指导产品的迭代改进,以实现用户的快速增长,可以看看上面几家数据分析公司披露的客户就知道它有多流行了: GrowingIO客户:有赞,豆瓣,36Kr等 神策数据客户:秒拍,AcFun,爱鲜蜂,pp租车等 诸葛IO客户:Enjoy,罗辑思维等 我司的一个主要产品是面向中小诊所的运营S
具体来讲,第一篇文章一场pandas与SQL的巅峰大战涉及到数据查看,去重计数,条件选择,合并连接,分组排序等操作。
所谓留存,就是指某日创建的账号在后续自然日登录的比例,比如3月1日新增账号创建数为100,在3月2日这部分用户登录数为51,那么3月1日新增用户的次日留存率为51/100=51%。
本文针对淘宝app的运营数据,以行业常见指标对用户行为进行分析,包括UV、PV、新增用户分析、漏斗流失分析、留存分析、用户价值分析、复购分析等内容; 本文使用的分析工具以MySQL为主,涉及分组汇总,引用变量,视图,关联查询等内容。
Push消息系统是很多APP的基础功能,是触达用户的一个非常重要的手段,对于提高产品活跃度、提高功能使用体验、提升用户粘性、提升用户留存率都会起到重要作用。召回唤醒沉默用户,提高用户的留存率,促进用户活跃,提高产品活跃度。 为什么Push消息推送是APP的基础配置
想要培养数据分析的能力,我认为可以从两部分来着手:一是数据分析方法论的建立,二是数据分析从入门到精通的知识学习。 那么该如何搭建自己的数据分析知识体系?数据分析的价值又在哪里?做数据分析有哪些具体的方法?又如何学习数据分析? 我把我之前的两篇文章整理下,和大家分享一下这些问题。 Part 1 | 数据分析方法论 & 知识体系 1. 数据分析体系:道、术、器 「道」是指价值观。要想做好数据分析,首先就要认同数据的意义和价值。一个不认同数据分析、对数据分析的意义缺乏理解的人是很难做好这个工作的。 「术」
互联网流量竞争愈发激烈,获客成本不断提升,企业不可能无限制的投入成本拉取新用户,那么最大限度的保证用户的留存就变得异常重要。最近看了红杉资本一篇关于留存的文章,翻译了大概的要点,也稍微添油加醋。
几乎所有的运营工作都是围绕着“拉新”、“留存”、“促活”、“转化”4个环节来开展的。
“ 产品经理在分析产品时,一般会关注DAU(日活跃用户数)、下载数、注册数、用户留存率等指标。留存率是一款产品无论在产品初期、中期或者长期都应该最关注的指标,它反映一个产品是否满足市场需求的数据。”
网上有关留存的文章很多,这篇不敢说是最全的,但最起码是较全的。由于上班加带娃,又要坚持原创,又要精细的准备每一篇干货,所以大概一周一更。如有做的不足的地方,请于后台留言,督促我改进,以分享更有价值的干货。
无论是产品经理、产品运营还是数据分析师,在评估一个产品的用户使用情况时肯定离不开留存率、忠诚度等观测指标。这些指标可以反映用户对于产品的粘性、产品用户价值质量的高低,及时了解用户留存、流失趋势,有助于帮助产品做更好的功能迭代,也有助于运营及时进程运营策略的调整,比如:当新用户留存率低的时候,是不是需要调整新用户的活动策略,或者当老用户留存率低的时候,是不是某个产品功能的问题,或者活动对老用户不友好而导致流失等等……
一个社交APP, 它的新增用户次日留存、7日留存、30日留存分别是52%、25%、14%。
现代管理学之父 彼得·德鲁克 提出用管理促进企业增长,他讲过一句非常经典的话:如果你不能衡量,那么你就不能有效增长。
在AARRR模型中用户留存处于第三个环节,获取(Acquisition)、活跃(Activation)、留存(Retention)、收入(Revenue)、推荐(Referral)。
在网站分析、电商分析、网游分析中,对于留存率的关注度极高,这一浪潮随着APP应用、社交游戏的火爆逐渐成为一个很重要的衡量准则,也甚至有了40-20-10准则。对于这个准则不予评价,今天就是简单说说留存率就是是个什么玩意。 留存率顾名思义,就是留下来存在的比率。从时间上我们分为次日、三日、七日、14日、30日、90日、180日。从用户上来分,有新登用户和活跃用户两大类。但是我们大多数是关注时间次日、三日、七日,用户是新登用户。下面具体说说这些个概念以及为什么是这样定义形式。 次日留存率:新登用户在首登后的次日
手机中的相机是深受大家喜爱的应用之一,下图是某手机厂商数据库中的用户行为信息表中部分数据的截图。
这套模型是我在运营路况电台 2000 万用户过程中积累出来的,也是我们团队做产品迭代,运营和产品目标设定最基本的方法。这个产品模型从几个相对不同的维度定义一个产品的关键要素,是测量产品好坏最核心的指标,通过这套模型能迅速发现产品的问题,留住用户的能力并预测产品未来的走向。这套模型非常实用,我多次给很多兄弟团队做过分享,但是一直受限于时间,没有整理成文,最近因为一个小手术要住院,时间比较充裕,才有时间把这套模型整理出来,分享给做产品和运营的童鞋们。对于一个产品,大家都知道留存和黏度等基本指标是非常关键的,如何
各位托尼和简妮,大家好,变成狗剩儿和翠花儿是不是也挺温馨的?不管叫什么名字,咱们回家是不是都应该好好学习一下?
下面的Excel记录了某款电商产品在1月1日发布,1个月后的新增及留存数据、商品销售数据、商品详情页浏览数据、及商品信息表:
功能留存分析矩阵是什么意思?通过这个矩阵,帮你分析出产品中的哪个功能对留存的价值最高。
漂亮的平均数并不是数据分析的最优解,只是用数据造出来的虚幻景象,会运营决策造成误导。数据不会说谎,只是做数据的人没有做到精准的分析而导致对数据呈现的错误解读。在用户生命周期各个环节中,用户的转化率和留存率是各不相同的,如果是用各个环节转化率的加权平均来代表整个周期的转化率显然是不正确的;当然如果仅对于留存阶段的留存率来说,新用户进入产品的第一、三、七、十四天的留存率也是各不相同的,显然取平均也是不科学的。
此题的核心是怎么计算用户的留存数/留存率?用户留存率是电商行业经常用到的指标,用户的留存数指“第一天登录,以后几天还继续登录的用户数”,"留存率=次日的留存数/当日总的用户数"。因此先要计算出每日的总的用户数、次日的留存数,然后再计算留存率。
前两天有个用户反馈,应用在更新时会自动下载安装某些应用,怀疑与 Bugly 有关。经过分析,原来是 apk 地址被劫持,强制换成应用的下载地址。在这里,腾讯Bugly郑重声明:Bugly 不会监控和拦截任何网络请求,也不会自动下载安装任何应用,我们目前提供的能力只限捕获崩溃、卡顿等异常,帮助产品提升质量。所以,请大家放心使用! 根据 Bugly 目前提供的能力,统计数据主要包括:崩溃率、卡顿率等,用于衡量产品质量的一些标准。自 Bugly 上线以来,越来越多用户建议:能否提供用户数据的统计,帮助了解产品基本
数据是会骗人的,尤其是平均数据(真实世界会有用户每个月下单2.5次吗?很可能是两个分别下单1次和4次的客户而已),一个中等的平均的用户画像其实完全是用数据创造出来的虚幻的形象。而一个漂亮的平均数所创造出来的这种虚幻景象,往往会给我们的决策造成误导。但是事实上,数据并不会说谎,只是分析数据的人没有做到精准分析而导致对数据呈现的错误解读!因此,Cohort Analysis的分析方法应运而生。
本文从提升用户行为分析效率角度出发,详细介绍了H5埋点方案规划,埋点数据采集流程,提供可借鉴的用户行为数据采集方案;且完整呈现了针对页面分析,留存分析的数仓模型规划方案,在数仓模型设计过程中遇见的痛点难点问题也相应的给出了解决思路及案例代码;在数据展示模块,提供了分析指标数据展示的逻辑流程及UI案例,旨在帮助有需要的同学全方位的了解用户行为数据全链路分析流程。
用户留存率每提高5%,利润就会提高25-95%。反过来说,用户的流失将会带来巨大的损失。
这部分用户占当时新增用户的比例即是留存率,会按照每隔1单位时间(例日、周、月)来进行统计。
前面我们介绍过《利用Python统计连续登录N天或以上用户》,这次我们聊聊怎么用python计算新增用户留存率。
关注产品对应用户的黏性,评判APP初期能否留下用户,以及活跃用户规模增长的情况,尤其在在AARRR模型,留存被单独说明为一个用户运营数据指标。
原文地址:Why the first ten minutes are crucial if you want to keep players coming back 原文作者:Adam Carpent
在日常的运营数据分析中,包括推广数据、活跃数据、留存数等多项数据,从这3个维度,增长黑客需要关注以下指标: 1.推广数据更关注转化用户的后续行为 渠道效果包括渠道曝光量、渠道转化率、渠道转化ROI、下载量、注册量等表象数据,但这类表象数据并没有有效体现产品的核心指标,因此被列入虚荣指标,过分关注虚荣指标会带来运营方向的偏差。 在推广数据上,增长黑客更关注以下数据: (1)渠道数据变化曲线:通过观察相同渠道在不同主题活动、不同时间因素的影响下,在曝光量、转化率、转化ROI等方面的数据变化,发现数据量高或数据量低时对应的影响因素,找到相关特征。 (2)落地页用户行为:通过对营销推广活动中的落地页进行转化漏洞、行为路径、点击热力图等分析方式,发现用户低转化的流失节点并找到相关原因,提升转化效果; (3)伪新增用户数:伪活跃用户有多种表现特征,例如在发生一次登录行为后再无访问行为、下载注册后次日即流失、访问时间长但访问内容少,可以判断为伪活跃用户。伪活跃用户一方面可能是渠道的假量,另一方面是对产品需求低的用户,观察伪活跃用户数可以定义渠道的获客效果,同时对真实有效用户量有明确的认知。
作者:陈辉 dau(Daily Active User)毫无疑问是互联网产品里最重要的指标之一(或许‘’之一‘’也可以去掉),每天的dau数据都会牵动着整个产品团队的心。因此,如果能对未来的dau进行
用户留存分析是互联网时代常用的一种数据分析方法。而很多快速发展的公司并没有相应的方法论沉淀,这就导致了在计算用户留存的时候会出现下面的一些问题:1)用户留存的定义不明确,不同的研发有自己的理解;2)没有保留计算过程的中间表,数据可复用程度低;3)不同研发的开发习惯不同,导致计算过程和表设计不统一。
| 导语 2019年底开始我开始接触数据分析,从初期的数据分析小白,到现在慢慢入门有些经验,想把我这里学到的数据分析的方法以最简单的方式解释给和当时的我一样小白的同学们,以下内容将分为【数据分析的意义】【基础指标体系搭建】【数据分析的方法】三大模块进行介绍 数据分析的意义 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析是当前企业管理过程中不容忽视的重要支撑点,企业需要有完整、真实、有效的数据进行支撑,才能够对未来
作者:罗曼罗 文章来源:人人都是产品经理,鸟哥比较 有的运营人员做渠道投放,每个渠道都投放了,点击量特别高,但激活量只有个位数。也有可能点击激活数量都很高,但是留存率很低。费用都花光了,但是效果没有出来。自己做数据分析,但是却得不到结论。 我们做数据分析的前提是需要拿到靠谱的数据。如果数据不准确,基于这个数据分析出来的结论是没有意义的。 获取准确的数据,首先需要我们选择靠谱的统计分析平台。即便在平台靠谱的情况下,也有可能出现一些不靠谱的情况。俗话说,有榜单的地方就有刷榜,有数据统计的平台就有数据作弊的作坊。
“移动应用产品的永恒不变的目标就是增长,而增长背后一定有数据的支撑。而什么样的增长分析模型可以让数据分析更加科学决策?”
据外媒(http://venturebeat.com)报道,美国机器人分析公司Botanalytics提出了评测聊天机器人的多项指标。 聊天机器人市场变化不断,发展迅猛。机器人在不断完善,人们对其的依赖程度也与日俱增。随着机器人变得越来越可信、越来越人性化,智能手机应用的需求逐渐降低。以2016年6月为例,美国49%的智能手机用户在这个月没有下载任何应用。相反,随着机器人性能的提升,智能手机用户开始更频繁地使用文本平台(text platform)。从这个角度来看,对于聊天机器人可否在机器人生态系统中占有一
软件及移动应用类产品常用指标 新增用户数 New Users 指首次打开应用的用户数量,通常通过设备识别符(如苹果系统的UDID)来识别用户的唯一身份。由于传输统计数据需要联网,因此即便是首次打开应用,若未能联网,也统计不到。此外,卸载再安装通常不会算作新增用户,老用户的版本升级也不会计算在内。当然,如果下载了应用并未安装,或安装之后没有启动过,也无法统计为新增用户。 活跃用户数 Active Users 指统计周期内有过特定使用行为的用户数量。同一用户在一个统计周期内多次使用记作一个活跃用户。这里“使用行
上回咱们介绍了《关于移动游戏运营数据指标,这里有一份简单说明,请查收》,不少朋友们看完后留言希望出一期关于LTV的计算和预估科普贴,刚好最近才哥也在做这方面的数据处理。
本文主要介绍了APP分析中的数据分析、用户生命周期、关键指标、用户行为分析、数据分析模型、产品优化和迭代、数据驱动决策、技术社区和招聘的10个重要方面。
分享九个数据分析的方法。” 一、关联分析 关联分析,也叫作“购物篮分析”,是一种通过研究用户消费数据,将不同商品之间进行关联,并挖掘二者之间联系的分析方法。 关联分析目的是找到事务间的关联性,用以指导决策行为。如“67%的顾客在购买啤酒的同时也会购买尿布”,因此通过合理的啤酒和尿布的货架摆放或捆绑销售可提高超市的服务质量和效益。关联分析在电商分析和零售分析中应用相当广泛。 关联分析需要考虑的常见指标: 支持度:指A商品和B商品同时被购买的概率,或者说某个商品组合的购买次数占总商品购买次数的比例。
节前写了一篇文章,通过统计指标分析渠道投放的效果(点击链接查看),今天想说下怎样辨别渠道作弊,分析渠道的效果,还有反作弊手段。欢迎拍砖。 有的运营人员做渠道投放,每个渠道都投放了,点击量特别高,但激活量只有个位数。也有可能点击激活数量都很高,但是留存率很低。费用都花光了,但是效果没有出来。自己做数据分析,但是却得不到结论。 我们做数据分析的前提是需要拿到靠谱的数据。如果数据不准确,基于这个数据分析出来的结论是没有意义的。 获取准确的数据,首先需要我们选择靠谱的统计分析平台,平台的选择可以参考我的前一篇文章
全球推荐系统领域顶级会议ACM RecSys于9月18-22日在新加坡举行。东北大学与腾讯微信看一看团队针对推荐系统中用户留存优化的最新研究论文“Interpretable User Retention Modeling in Recommendation” 获得大会最佳短文奖(Best Short Paper Award)。该论文由入选2022犀牛鸟精英人才计划的丁蕊同学在学界导师杨晓春教授和微信看一看谢若冰高级研究员的联合培养下主要完成。
对商家来说,如果用户“走了不再回来”,即小程序不能被用户反复使用,那就有些令人局促不安了。这就关系到小程序的留存能力,那么,如何才能有效地提高小程序的留存率?
DAU、MAU、留存率、频率、时长.....到底产品经理要分析什么数据?笔者结合海外移动端产品的数据分析实践与MTA服务的客户案例,带你从产品初创到成熟不同阶段看数据分析如何应用于产品设计和产品运营。 按大众化的分法,产品的生命周期(PLC, Product Lifetime Cycle)分为初创期、成长期、成熟期、衰退期,在产品的每个阶段,数据分析的工作权重和分析重点有所区别,下面按阶段结合案例来聊聊。 一、初创期 初创期的重点在于验证产品的核心价值,或者说验证产品的假设:通过某种产品或服务可以为特定的
1、明确分析的目标 做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。 明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。 ◆ ◆ ◆ 2、收集数据的方法 说到收集数据,首先要做好数据埋点。 所谓“埋点”,个人理解就是在正常的功能逻辑中添加统计代码,将自己需要的数据统计出来。 目前主流的数据埋点方式有两种: 第一种:自己研发。开发时加入统计代码,并搭建自己的数据查询系统。 第二种
来源:李宽wideplum|作者:李宽wideplum ---- 腾讯SaaS加速器 三期40席项目招募 报名方式 腾讯SaaS加速器,作为腾讯产业加速器的重要组成部分,旨在搭建腾讯与SaaS相关企业的桥梁,通过资金、技术、资源、商机等生态层面的扶持,从战略到场景落地全方位加速企业成长,从而助力产业转型升级。 三期招募正式开始,扫描 二维码 立刻报名 (或点击文末 “阅读原文”,直达报名入口) 详情介绍:SaaS行业英雄集结令再发,腾讯SaaS加速器三期开启招募 你是否了解2021年 S
在刚迈入数据的大门时,我经常对一些数据指标或者数据本身的概念很模糊,尤其是当跟运营、数据分析师扯需求的时候,会被这些密密麻麻的指标给弄糊涂。为了更好的在行业里面摸打滚爬,花了很多时间阅读一些指标相关的文章、书籍,总算解决了这个问题。
领取专属 10元无门槛券
手把手带您无忧上云