在互联网逐渐步入大数据时代后,不可避免的给企业及消费者行为带来一系列改变与重塑。其中最大的变化莫过于,消费者的一切行为在企业面前似乎都将是“可视化”的。随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精准营销服务,进而深入挖掘潜在的商业价值。于是,“用户画像”的概念也就应运而生。
上次我们以O2O产品为例讨论了用户画像的实践,这次我们将以OTA产品为例,进一步讨论如何依托数据,搭建用户画像系统。 思 考 用户画像是什么? 简单来说,用户画像就是从不同的维度来表达一个人,这些维度可以是事实的,可以是抽象的;可以是自然属性,比如性别、年龄;可以是社会属性,比如职业、社交特征;可以是财富状况,比如是否高收入人群,是否有固定资产;可以是家庭情况,比如是否已经结婚,是 否有孩子;可以是购物习惯,比如喜欢网购还是喜欢逛商场;可以是位置特征,比如在哪个城市生活;可以是其他行为习惯。 总之,所有大家
数据化运营时代,运营方式从过去粗放式转向精细化。用户画像受到热宠,不搞用户画像都不好意思说在做精细化运营了。各种用户画像标签体系建设、从0到1教你构建用户画像之类的文章广泛传播。前几天听到有同学在规划CDP平台时,认为画像即标签,标签就是画像,用户画像和用户分群是同一主体的不同叫法,产品架构设计时,边界不清,功能交错。于是,觉得还是要回归到最基本的问题,把这几个概念厘清一下。
用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。
写在前面 本篇内容来源于网络,因为工作需要,所以就去网上查找资料,顺便整理一下分享给大家,小红自己也是在学习阶段, 做这个公众号的目的也是为了输出自己学习的内容,一方面是为了自己更好的学习,另一方面希
用户画像最初的意义,在于帮助企业找寻目标用户,明确出他们的喜好与厌恶,从而优化产品功能与服务,最终创造出更多的商业与社会价值。
以上场景都涉及到“用户画像”的使用。我们需要定义用户群体,需要更了解用户,自然而然就会去认知用户,收集用户的相关信息,这些步骤其实就是在逐步构建用户画像。接下来,我将带你通过4个问题一次性弄明白用户画像。
以上场景都涉及到“用户画像”的使用。我们需要定义用户群体,需要更了解用户,自然而然就会去认知用户,收集用户的相关信息,这些步骤其实就是在逐步构建用户画像。
用户画像,即用户信息标签化,是大数据精细化运营和精准营销服务的基础。设计从基础设施建设到应用层面,主要有数据平台搭建及运维管理、数据仓库开发、上层应用的统计分析、报表生成及可视化、用户画像建模、个性化推荐与精准营销等应用方向。
导读:在互联网步入大数据时代后,用户行为给企业的产品和服务带来了一系列的改变和重塑,其中最大的变化在于,用户的一切行为在企业面前是可“追溯”“分析”的。企业内保存了大量的原始数据和各种业务数据,这是企业经营活动的真实记录,如何更加有效地利用这些数据进行分析和评估,成为企业基于更大数据量背景的问题所在。
最近在工作之余,结合自己的理解和论坛上的一些帖子,整理了份用户画像的文章,个人觉得这篇文章在宏观上很好地描述了用户画像的主要内容。(文章内的图片来源于不同帖子,权当分享,侵删)
有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。
用户精细化分类也可以称做用户画像,是目前很常见的一种运营手段,目的是为了更好的服务不同性质的客户,提高每个环节的转化率,最大程度挖掘客户价值,创造利润。
原作者:王建军 前一篇粗略的介绍了建立用户画像的过程,连载二更进一步,以时尚杂志全媒体为业务原型,把抽象的文字描述实例化,从战略目的分析、如何建立用户画像体系、怎么对标签进行分类分层级三个不同角度来说说用户画像建立的过程。梳理标签体系是实现用户画像过程中最基础、也是最核心的工作,后续的建模、数据仓库搭建都会依赖于标签体系。
用户画像的核心在于给用户“打标签”,每一个标签通常是人为规定的特征标识,用高度精炼的特征描述一类人,例如年龄、性别、兴趣偏好等,不同的标签通过结构化的数据体系整合,就可与组合出不同的用户画像。
用户画像的核心在于给用户“打标签”,每一个标签通常是人为规定的特征标识,用高度精炼的特征描述一类人,例如年龄、性别、兴趣偏好等,不同的标签通过结构化的数据体系整合,就可与组合出不同的用户画像。
随着用户的一切行为数据可以被企业追踪到,企业的关注点日益聚焦在如何利用大数据为经营分析和精准营销服务,而要做精细化运营,首先要建立本企业的用户画像。
作者:fionaqu 腾讯WXG程师 |导语 日常工作中,我们常常需要了解使用我们产品的用户到底是什么人,他们的消费习惯是怎样的,行为轨迹是怎样的等等…..正好最近读了《用户画像:方法论与工程化解决方案》,对用户画像有一些体系化的学习,同时结合日常工作经验对用户画像的方案论及实施方法进行了体系化的整理。 日常工作中,我们常常需要了解使用我们产品的用户到底是什么人,他们的消费习惯是怎样的,行为轨迹是怎样的等等…..正好最近读了《用户画像:方法论与工程化解决方案》,对用户画像有一些体系化的学习,同时结合日常
用户画像,大数据时代老生常谈且又长久不衰的话题,公司都在搞,文章满天飞,在这个人人都喊“数据驱动业务”的时代,你不懂用户画像,不搞用户画像,你都不好意思跟别人聊(chui)业(niu)务(pi)。
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。
用户画像,即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或者产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
【导读】2017年 11月4日,大数据系统与应用研讨会在中科院计算所举行。会议邀请了中科院计算所程学旗老师和其他来自联想、京东、美团点评、小米等一线互联网公司大数据领域的专家,通过主题演讲,分享并深度探讨了大数据技术在业界一线的最佳实践和创新应用。 小米大数据总监司马云瑞为大会带来了题为《小米用户画像的演进及应用》的分享报告,循序渐进地分享了小米用户画像系统的建设和应用。小米公司经过7年的发展,积累了海量的日志和用户行为数据。基于全生态、多维度的数据资产,构建了丰富的用户画像体系,在业务运营、广告、互联网
之前开发过一个画像项目,并为大家介绍了项目过程中部分开发的细节,例如PSM,RFE,USG等模型的标签开发落地。但是后来考虑到对于没有画像开发经验,尤其是零基础的大数据小白而言不是很友好,理解起来也不是很容易。正好最近在看一些文献资料,所以,我又专门开了一个专题,打算重新为大家讲解关于用户画像的知识。感兴趣的小伙伴记得关注加星标,每天第一时间收获技术干货!
[ 导读 ]用户画像作为当下描述分析用户、运营营销的重要工具,被全部互联网人熟知,用户画像的定义并不复杂,是系统通过用户自行上传或埋点上报收集记录了用户大量信息,为便于各业务应用,将这些信息进行沉淀、加工和抽象,形成一个以用户标志为主key的标签树,用于全面刻画用户的属性和行为信息,这就是用户画像。
在【rainbowzhou 面试3/101】技术提问--大数据测试是什么,你如何测?中,我提到了大数据的测试还有一类,即对大数据应用产品的测试。大数据应用产品常见的有BI报表、用户画像系统、数据挖掘平台等,今天就聊聊关于用户画像的那些事,希望对大家有所帮助。
作者 CDA 数据分析师 背景 刘路老师之前主要是做政府数据分析,目前主要服务企业。他认为政府和企业的数据分析没有本质区别,都是有目的的进行收集、整理、加工和分析数据,提炼有价值信息的过程,都是为
前几天,有个搞运营的小伙伴向我吐槽,熬了几个夜做出来的用户画像被老板说垃圾。不管是市场人员、运营人员还是产品经理,都躲不开“用户画像”,但经常听到伙伴们抱怨,这个词太大了,根本不知道从哪里下手。 老李给大家归纳了一套用户画像学习方法,从理论到实践,教大家怎么做好用户画像。 ◆ 什么是用户画像? 简单来说,用户画像=给用户打标签。举个例子,如果你关注老李的头条,每天看的都是数据分析类的内容,那你就会被打上“数据分析”、“职场”等标签,下次打开头条,给你推荐的就是“如何转行数据分析”、“数据分析必备工具”等文章
导读:在互联网步入大数据时代后,用户行为给企业的产品和服务带来了一系列的改变和重塑,其中最大的变化在于,用户的一切行为在企业面前是可“追溯”“分析”的。企业内保存了大量的原始数据和各种业务数据,这是企业经营活动的真实记录,如何更加有效地利用这些数据进行分析和评估,成为企业基于更大数据量背景的问题所在。随着大数据技术的深入研究与应用,企业的关注点日益聚焦在如何利用大数据来为精细化运营和精准营销服务,而要做精细化运营,首先要建立本企业的用户画像。
作者:刘黎春 编辑:王雪燕 摘自:51CTO 由51CTO举办的WOT”互联网+”时代大数据技术峰会上,来自腾讯数据挖掘高级工程师刘黎春做了以《社交数据在征信领域的应用探索》为主题的演讲,主要内容由社
“用户画像”这个说法现在是在数据分析和数据挖掘领域是很流行的。 这个说法比较形象,它是指我们在数据库或数据仓库里使用用户信息的记录,对这些信息逐渐丰富以后完成对用户的描述。整个描述的过程就像给用户画像一样,因为我们平时在绘画中说的画肖像画一样,一笔一笔照着模特画,最后完成对模特样子的描述。 我们希望对用户做“画像”的目的也是比较明确的,就是我们希望通过某些手段对用户做甄别,把他们分成彼此相同或不同的人群或个体,进而区别化提供服务和进行观察分析——这通常是做用户画像的核心目的所在。 在数据库或者数据仓库里怎
做推荐系统的时,我们需要了解我们的用户,也就是说需要对用户的基本情况、基本喜好有个了解。
导读:用户标签是个性化推荐、计算广告、金融征信等众多大数据业务应用的基础,它是原始的用户行为数据和大数据应用之间的桥梁,本文会介绍用户标签的构建方法,也就是用户画像技术。
用户画像其实就是从海量的用户数据中,建模抽象出来每个用户的属性标签体系,这些属性通常需要具有一定的商业价值。
随着大数据与人工智能(AI)技术的发展与成熟,国家政策层面对大数据与人工智能技术、创新、创业层面的支持,企业越来越意识到数据和AI技术的价值,并逐步认可数据是企业的核心资产。怎么利用大数据和AI技术从这些价值密度低、源源不断地产生的海量数据中挖掘商业价值,提升公司的决策力和竞争力,是每个提供产品/服务的公司(特别是toC互联网公司)必须思考和探索的问题。
首先看一下大数据与应用画像的关系,现在大数据是炙手可热,相信大家对大数据的四个V都非常了解,大数据应该说是 信息技术的自然延伸,意味着无所不在的数据。 我们先看下数据地位发生转变的历史,在传统的IT
现在已经进入大数据时代, 数据是无缝连接网络世界与物理世界的DNA。发现数据DNA、重组数据DNA是人类不断认识、探索、实践大数据的持续过程。大数据分析可以有效地促进营销,个性化医疗治病,帮助学生提高成绩,利于老师提高教学水平,还可以用于教学,许多产品可以用到大数据技术,如量化分析金融产品等。必须加强大数据技术的研究并实际应用.这里对目前最流行和最实用的用户画像技术进行讲解,并分析大数据分析的常用算法。
摘要: 伴随着大数据应用的讨论、创新,个性化技术成为了一个重要的落地点。相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。伴随着对人的了解逐步深入,用户画像的概念悄然而生。 用户画像 用户画像,能够完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 什么是用户画像? 举例而言,某位客户的特征描述为:男,31岁,收入一万以上,爱美食,团购达人,
在【rainbowzhou 面试13/101】技术提问--说说你了解的大数据应用产品?中,聊了聊用户画像是什么、如何用、前置条件以及它与大数据的关系。今天想详细聊聊关于用户画像平台的构成,希望对大家有所帮助。
但是大家的疑惑点可能就集中在三个维表的建设上,包含「主播用户画像维表,观众用户画像维表,直播间画像维表」。
在《什么的是用户画像》一文中,我们已经知道用户画像对于企业的巨大意义,当然也有着非常大实时难度。那么在用户画像的系统架构中都有哪些难度和重点要考虑的问题呢?
二是分享自如的达芬奇·用户画像平台的建设实践,帮助大家从整到分地了解用户画像的建设过程,以及应有的功能模块;
领取专属 10元无门槛券
手把手带您无忧上云