DMA remapping就是在DMA的过程中IOMMU进行了一次转换,MMU把CPU的虚拟地址(va)转换成物理地址(pa),IOMMU的作用就是把DMA的虚拟地址(iova)转换成物理地址(pa),MMU转换时用到了pagetable,IOMMU转换也要用到io pagetable,两者都是软件负责创建pagetable,硬件负责转换。IOMMU的作用就是限制DMA可操作的物理内存范围,当一个PCI设备passthrough给虚拟机后,PCI设备DMA的目的地址是虚拟机指定的,必须要有IOMMU限制这个PCI设备只能操作虚拟机用到的物理内存。
ACPI这个单词,用电脑用多了的同学应该或多或少能在系统的报错信息等地方见过它。它表示表示高级配置和电源管理接口(Advanced Configuration and Power Management Interface)。通过ACPI规范,就能查询计算机硬件的一些信息。
CPU发出的地址是虚拟地址,MMU通过页表技术,把虚拟地址转换为物理地址,再去访问物理内存条。
MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器、物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制的内存访问授权,多用户多进程操作系统。 TLB(Translation Lookaside Buffer)传输后备缓冲器是一个内存管理单元用于改进虚拟地址到物理地址转换速度的缓存。TLB是一个小的,虚拟寻址的缓存,其中每一行都保存着一个由单个PTE组成的块。如果没有TLB,则每次取数据都需要两次访问内存,即查页
1. 一句话总结 内存虚拟化解决虚拟机里面的进程如何访问物理机上的内存这一问题。 GuestOS本身有虚拟地址空间,用GVA表示。虚拟机认为自己独占整个内存空间,用GPA表示。 HostOS本身有虚拟机地址空间,用HVA表示。宿主机本身有物理内存空间,用HPA表示。 好,内存虚拟化的问题变成了GVA->HPA的映射问题。 GVA->GPA通过GuestOS页表映射。HVA->HPA通过HostOS页表映射。因此,只要建立GPA->HVA的映射关系,即可解决内存虚拟化的问题。但,这样三段逐次映射,效率低下
之所以这样构造是因为会使操作系统很方便的为每个应用程序构造页表,即虚拟页和物理页映射关系表
我是cloud3,前段时间有虚拟机出现内存问题,今天借着这个话题给大家介绍一下内存虚拟化,也就是MMU虚拟化。
这个地址绝对不是物理地址,理论上修改了数据为300之后不可能在输出有100,访问一个地址怎么可能又是100也是300。这个地址在系统层面上称之为虚拟地址。
快表其实是 TLB,是 CPU 封装在芯片里的一个东西,这个概念我在这篇也有讲到:真棒!20 张图揭开内存管理的迷雾,瞬间豁然开朗
在存储器里以字节为单位存储信息,为正确地存放或取得信息,每一个字节单元给以一个唯一的存储器地址,称为物理地址(Physical Address),又叫实际地址或绝对地址。
There are only two hard things in Computer Science: cache invalidation and naming things.
存储器的层次: 分为寄存器、主存(内存)和 辅存(外存)三个层次。 主存:高速缓冲存储器、主存储器、磁盘缓冲存储器, 主存又称为可执行存储器; 辅存:固定磁盘存储器、可移动的外部存储器; 其可长期保存数据,但不能被处理器直接访问。 此处针对的是在OS层面上对主存(内存)的管理。 内(主)存储器管理的主要功能:① 逻辑地址到物理地址的转换 ② 内存(主存)空间的分配与回收 ③ 内存信息(数据)的共享与保护 ④ 内存的逻辑扩充(虚拟存储器的实现)
之前有说过x86保护模式下的分页.这里为了复习再说一遍,在这里可能为了简单介绍会遗漏些许.所以贴出之前的保护模式分页机制资料
这里有相对地址和绝对地址,相对地址就是别的球员相对于 1 号球员的位置,绝对地址是他们实际居住的房间号,相对地址就是内存中的逻辑地址,而绝对地址就是物理地址。
https://blog.csdn.net/ByteDanceTech/article/details/104765810
当进程在CPU上运行时,如指令中涉及逻辑地址时,操作系统自动根据页长得到页号和页内偏移,把页内偏移拷贝到物理地址寄存器,再根据页号,查页表,得到该页在内存中的块号,把块号左移页长的位数(二进制实现),写到物理地址寄存器。
虚拟内存就是在你电脑的物理内存不够用时把一部分硬盘空间作为内存来使用,这部分硬盘空间就叫作虚拟内存。
进程P有8个页面,页号分别为0~7,页面大小为4K ,假设系统给进程P分配了4个存储块,进程P的页面变换表如下所示。表中状态位等于1和0分别表示页面在内存和不在内存。若进程P要访问的逻辑地址为十六进制 5148H,则该地址经过变换后, 其物理地址应为十六进制( );如果进程P要访问的页面6不在内存,那么应该淘汰页号为( )的页面。
有了这个基本框架,我们对于语言的学习更加易于理解,但是地址空间究竟是什么❓我们对其并不了解,是不是内存呢?对于是什么这个问题,我们需要通过一个例子来进行切入,见一见现象
Ipconfig /release Ipconfig /all Ipconfig
操作系统 内存使用与分段--10 如何让内存用起来? 那就让首先程序进入内存 重定位: 修改程序中的地址(是相对地址) 程序载入后还需要移动… 重定位最合适的时机 - 运行时重定位 整理一下思路 引入
终于也是跨过了处理机管理,来到内存管理的内容了。目前基本存储管理这一章还差分页、分段以及段页三种管理方式没有学,之所以在学之前来写这一篇文章,主要是觉得这一章的内容过于零碎了,不易成逻辑又很容易忘掉,所以写这一篇来串一下已学的内容,在复习的基础上为学接下来的做一些铺垫。
常见的内存分配函数有malloc,mmap等,但大家有没有想过,这些函数在内核中是怎么实现的?换句话说,Linux内核的内存管理是怎么实现的?
索引被用来快速找出在一个列上用一特定值的行。没有索引,MySQL 不得不首先以第一条记录开始,然后读完整个表直到它找出相关的 行。表越大,花费时间越多。 添加索引是给某一个字段,或者说某些字段添加索引。
百万粉丝大号Spenser,分享了一个故事。 有一天,一个粉丝问Spenser:“S叔,有什么最直接的办法得到大佬的青睐或者帮助?”
用户程序的地址空间被划分成若干固定大小的区域,称为“页”,相应地,内存空间分成若干个物理块,页和块的大小相等。可将用户程序的任一页放在内存的任一块中,实现了离散分配。
上一篇我们了解了内存在内核态是如何管理的,本篇文章我们一起来看下内存在用户态的使用情况,如果上一篇文章说是内核驱动工程师经常面对的内存管理问题,那本篇就是应用工程师常面对的问题。
-计算机系统中存储器一般分为内存储器和辅助存储器两级 -内存可以分成系统区和用户区两部分,系统区用来存储操作系统等系统软件,用户区用于分配给用户作业使用
说明: 在左边的单处理器系统中,如果一个进程想要运行,那么必须将进程地址空间装载到物理内存中才可以运行。 而右边的是多处理器系统中有多个进程需要进入物理内存执行,这里要解决的问题就是,如何将进程地址空间合理的装载到物理内存中,如何合理的分配使用内存,使得每个进程能正确执行。
操作系统确实是比较难啃的一门课,至少我认为比计算机网络难太多了,但它的重要性就不用我多说了。
有一些细微的差别,但是并不影响,按照正常人的逻辑思维方式低地址放在下面,高地址放在上面。那么图中这些区域真的就是这样排列的吗?我们来验证一下:
物理内存的宽度为1字节 如使用c语言,可以定义出char类型(1字节),在虚拟地址空间上可以把1字节的单位映射到内存中
1.ROWNUM: 概念:OORACLE使用ROWNUM是一个伪列,数据库提取记录才会生成的数值1,2,3,4 作用是用于实现ORACLE的分页必须使用子查 询实现
虚拟地址空间—–分配给进程的虚拟内存 虚拟地址—–在虚拟内存中指令或数据的位置,该位置可以被访问,仿佛它是内存的一部分。
甄建勇,高级架构师(某国际大厂),十年以上半导体从业经验。主要研究领域:CPU/GPU/NPU架构与微架构设计。
C语言模拟实现虚拟存储管理(请求分页存储管理)使用FIFO算法 1)实验目的 2)实验内容 3)实验基本原理和解决方案 4)数据结构、模块划分 5)画出程序的基本结构框图和流程图(包括主程序流程图、模块详细设计流程图等),对程序的每一部分要有详细的设计分析说明,说明设计实现所用的原理。 6)源代码,要求格式规范,适当加注释,以有助于说明问题为宜,注释不少于三分之一。 7)运行的结果,要求有对结果的分析 8)参考资料 一、实验目的 存储管理的主要功能之一是合理的分配空间。请求分页存储管理是一种常用的虚拟存储管理技术。本实验的目的是:通过编程模拟实现请求分页存储管理中硬件地址转换过程、缺页中断处理过程,以及先进先出页面置换算法,加深对页式虚拟存储管理的理解,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换方法;通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
📚 文档目录 合集-数的二进制表示-定点运算-BCD 码-浮点数四则运算-内置存储器-Cache-外存-纠错-RAID-内存管理-总线-指令集: 特征- 指令集:寻址方式和指令格式 过去, 只有操作系统和一个程序在内存中. 现在, 操作系统和多个程序都在内存中. 程序等待 I/O 时, 为了避免处理器等待, 需要进行优化, 使得更多的程序可以加载入内存. 内存管理: 在多程序设计系统中, 内存的 “用户部分” 应该被进一步划分以适应多个程序, 这是由系统动态决定的. 加载更多程序的途径 增大内存
基本地址转换机构:一组硬件机构,将逻辑地址转换成物理地址,需要两次访存,先查页表再查内存 具有快表的地址转换机构 1)局部性原理 2)什么是快表 3)引入快表后,地址转换只需要一次访存
ARP(Address Resolution Protocol,RFC 826)是根据IP地址获取物理地址的一个TCP/IP协议。主机通过将ARP请求广播到网络上的所有主机并接收返回消息来确定目标IP地址的物理地址,同时将IP地址和硬件地址存入本机ARP缓存中,下次请求时直接查询ARP缓存。
DOS时代 - 同一时间只能有一个进程在运行,单进程 windows9x开始,多个进程可以装入内存 引发问题: 内存撑爆 互相打扰
Wireshark可以跟踪网络协议的通讯过程,本节通过ARP协议,在了解Wireshark使用的基础上,重温ARP协议的通讯过程。
目前我们已进入保护模式,但依然会受到限制,虽然地址空间达到了4GB,但此空间是包括操作系统共享的4GB空间,我们把段基址+段内偏移地址称为线性地址,线性地址是唯一的,只属于某一个进程。在我们机器上即使只有512MB的内存,每个进程自己的内存空间也是4GB,这是指的虚拟内存空间。一直以来我们都是在内存分段机制下工作的,该模式下如果系统里面的应用程序过多,或者内存碎片过多无法容纳新的进程,则可能会出现进程需要等待,或无法直接运行的局面,而内存分页机制,理论上只要4KB内存就可以让程序运行下去。
索引:是一种特殊的文件,它们包含着对数据表里所有记录的引用指针。更通俗的说,数据库索引好比是一本书前面的目录,能加快数据库的查询速度。
在 x86 系统中,内存管理中的分页机制是非常重要的,在Linux操作系统相关的各种书籍中,这部分内容也是重笔浓彩。
http://bbs.chinaunix.net/thread-2083672-1-1.html
物理地址需求 : 在 数据链路层 传输数据帧时 , 必须知道 目的 IP 地址的 MAC 地址 ;
领取专属 10元无门槛券
手把手带您无忧上云