C语言实现牛顿迭代法解方程 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,我们可以确定至少存在一个可直接或间接地不断由旧值递推出新值的变量,...二、建立迭代关系式 所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。...这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。...接下来,我介绍一种迭代算法的典型案例----牛顿-拉夫逊(拉弗森)方法 牛顿-拉夫逊(拉弗森)方法,又称牛顿迭代法,也称牛顿切线法:先任意设定一个与真实的根接近的值x0作为第一次近似根,由x0求出f...我们来看一副从网上找到的图: ? 例子:用牛顿迭代法求下列方程在值等于2.0附近的根:2x3-4x2+3x-6=0。
牛顿法,大致的思想是用泰勒公式的前几项来代替原来的函数,然后对函数进行求解和优化。牛顿法和应用于最优化的牛顿法稍微有些差别。...牛顿法 牛顿法用来迭代的求解一个方程的解,原理如下: 对于一个函数f(x),它的泰勒级数展开式是这样的 \[f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{1}{2}...所以,牛顿法的迭代公式是\(x_{n+1} = x_n – \frac{f(x_n)}{ f'(x_n)}\) 牛顿法求解n的平方根 求解n的平方根,其实是求方程\(x^2 -n = 0\)的解 利用上面的公式可以得到...应用于最优化的牛顿法 应用于最优化的牛顿法是以迭代的方式来求解一个函数的最优解,常用的优化方法还有梯度下降法。...\(\nabla f(x_n)\)是 \(f(x)\)的导数,是N*1维的。 和梯度下降法相比,在使用牛顿迭代法进行优化的时候,需要求Hessien矩阵的逆矩阵,这个开销是很大的。
大学课程中有一门数值分析的课程,里面有牛顿迭代法的介绍。 这里说下牛顿迭代法的一种应用,就是求一个数的开方。...产生背景: 多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数 ? 的泰勒级数的前面几项来寻找方程 ? 的根。...牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程 ? 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。...这样可以使用牛顿迭代法进行求解 原理如下: ?
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出。但是,这一方法在牛顿生前并未公开发表。...但是,有可能会遇到牛顿迭代法无法收敛的情况。比如函数有多个零点,或者函数不连续的时候。 牛顿法举例 下面介绍使用牛顿迭代法求方根的例子。...牛顿迭代法是已知的实现求方根最快的方法之一,只需要迭代几次后就能得到相当精确的结果。 首先设x的m次方根为a。 下面程序使用牛顿法求解平方根。...文献2提到了比上述程序更快的求解平方根的非典型牛顿迭代法。...至此人们得以通过研究这款游戏引擎的源文件来查看它成功的秘密。 在其中一个名字为q_math.c的文件中发现了如下代码段。
来源:DeepHub IMBA本文约1800字,建议阅读10分钟本文利用可视化方法,为你直观地解析牛顿迭代法。...牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。...与梯度下降法的对比 梯度下降法和牛顿法都是迭代求解,不过梯度下降法是梯度求解,而牛顿法/拟牛顿法是用二阶的Hessian矩阵的逆矩阵或伪逆矩阵求解。...可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想)。 那为什么不用牛顿法替代梯度下降呢?...牛顿法使用的是目标函数的二阶导数,在高维情况下这个矩阵非常大,计算和存储都是问题。 在小批量的情况下,牛顿法对于二阶导数的估计噪声太大。 目标函数非凸的时候,牛顿法容易受到鞍点或者最大值点的吸引。
迭代算法,通常需要考虑如下问题: - 确定迭代变量 - 确定迭代关系式 - 确定迭代终止条件 牛顿迭代法 牛顿迭代法简介 牛顿迭代法,求解如下问题的根xx f(x)=0 f(x) = 0...牛顿迭代法需要满足的条件是: f′(x)f'(x)是连续的,并且待求的零点xx是孤立的。 那么,在零点xx周围存在一个区域,只要初始值x0x_0位于这个邻域内,那么牛顿法必然收敛。...并且,如果f′(x)f'(x)不为0,那么牛顿法将具有平方收敛的特性,也就是,每迭代一次,其结果的有效倍数将增加一倍。 简单推导 ?...f(x)=x2−nf(x) = x^2 -n,上式同样可以化成 xn+1=12(xn+nxn) x_{n+1} = \frac{1}{2} (x_n + \frac{n}{x_n}) 本质上,牛顿迭代法就是利用了泰勒公式的前两项和...延伸与应用 同样的,牛顿迭代法同样可以求n次方根,对于f(x)=xm−nf(x)=x^m - n 有 xn+1=xn−xnm(1−axn−m) x_{n+1}=x_n-\frac{x_n}{
Java中的浮点型默认是double类型,像0.01之类的都是double类型的,因此想要用float类型可以在小数后面加上f或F。
对方程 [68e2e51cef848d1909d348e71d828c8400e.jpg] 不动点迭代法undefined原方程可转换为 [7a84526e766abd12c36903ff023681b5eca.jpg...] 由不动点迭代法得 [688355d352ab40cc232b5a3e3a04ce88ad4.jpg] 牛顿迭代法undefined给定一个初始x0,做一条垂线与函数f(x)相交,得到的交点为...之后对(x1, 0)重复上述步骤,直到与x轴的交点的横坐标xn逐渐收敛到f(x)=0的根。...也就是对于第i+1次迭代(i>=0),有下列等式 [08c79e9b34c538db8ef188095bea3ae510c.jpg] Julia代码如下 print("Input max iter...牛顿迭代\n") println("step$(0): $(x) step$(0):$(newton_y)") while ((abs
牛顿迭代法。从一个值開始。用无限逼近的方式得出结果。...include #include int main() { double a; double x; scanf("%lf",&a);//求a的平方根和立方根
什么是牛顿迭代法? 今天在刷 LeetCode 的 sqrt(x) 这道题的时候,看到别人的解法中有使用牛顿迭代法。之前也看到这个方法很多次,但都没有去了解。...牛顿法是一种用于找到实数函数的根的近似值的方法,是求根算法中的一个代表。下面以一个例子来具体说明用牛顿法求根的过程。...处的导数,所以有 ? ,最后代入得 ? 。后面在 ? 对应的函数值处取切线,然后开始新一轮的迭代。之后再循环这个过程,直到达到足够准确的值,这就是牛顿法求根的过程。...求根的问题,所以就可以用牛顿法来求解:首先可以得知 ? ,所以迭代公式为 ?...else: return mid return low - 1 """ # 采用牛顿迭代法
编程任务:编写一个程序,任意给定一个正实数,计算该实数的近似平方根。 编程要点: ① 理解牛顿迭代法; ②掌握使用牛顿迭代法计算任意正实数近似平方根的算法。...牛顿迭代法 先前掌握的解一元二次方程的公式用到了开方,即平方根计算,因此在计算平方根时,不能使用解一元二次方程的公式。...解方程公式虽然不能使用,但我们可以使用牛顿迭代法来找到方程的近似根,牛顿迭代法的主要思想是逼近和迭代。 牛顿迭代法也称牛顿-拉弗森方法,该方法主要是通过逼近和迭代寻找无解方程的近似根。...a = input("请输入一个正实数:\n") print("%.5f" % sqrt(float(a))) 理解牛顿迭代法 要理解牛顿迭代法,需要先理解曲线的切线是曲线的线性逼近,线性逼近就是用曲线某点的切线来近似该点附近的曲线...下面通过绘图来理解牛顿迭代法,绘制图形可以使用Python语言,也可以使用matlab语言。
今天要准备写的就是非常经典的牛顿迭代法求平方根,事实上现在的绝大部分编程语言中,标准库中都已经为我们准备好了计算平方根的函数,但是本着学习的精神,今天我们也要写出一个求平方根的函数。.../** * 牛顿迭代法求平方根 * @param number 求值的数 * @param accuracy 精度 * @return Double */ public...,而接下来为了体现牛顿迭代法的优势,我们再写一个二分法计算平方根的算法,来对比: public static double DichotomySqrt(double number, double...,跟牛顿迭代法的验证结果相似,看精度差是否在定义范围内。...那么接下来我们来测试二分法和牛顿迭代法求值的效率。
2 的更高次方的时候这样的算法,对于算法竞赛而言时间上显然是不允许的,因此提出了快速幂算法。...= mid - 1 elif mid ** 2 < x : low = mid + 1 return high 还有一种方法是牛顿法...牛顿迭代法是用切线来估计曲线,我们可以在某个点上做切线得到切线方程y=f’(x0)(x-x0)+f(x0),然后找出切线与横轴的交点,就是下一个迭代点。...迭代点和零点具体一个的关系: x_{n+1} = x_n – f(x_n) / f’(x_n) 牛顿法的公式具体推导: X_{k+1}=X_k-\frac{Y_k}{{f}'(X_k)} = X_k-...,需要是小数点后6位,牛顿法瞬间解决。
我们今天给大家介绍一个用来迭代的算法牛顿迭代法(Newton's method)。单变量下又称为切线法。它是一种在实数域和复数域上近似求解方程的方法。首先我们看下牛顿迭代算法的公式: ?...接下来我们直接用一个R语言的实例来看下,牛顿迭代是如何工作的。我们看下下面这个例题: ?...以上就是简单的一元函数求解,当然我们基于我们数学的基础也可以人工展开计算,但是当次幂升到很高,那我们就无从下手了,这时候就可以直接通过牛顿迭代进行获取根。...然后构建我们的程序(以下程序引自网友PPT): funs=function(x){ f=c(x[1]^2+x[2]^2-5,(x[1]+1)*x[2]-(3*x[1]+1)); J=matrix...上图结果多了个Funval,也就是对应的根的f(x)的值。由结果可以看出,的确可以迭代到非常接近根的位置。 当然还有其他的迭代算法梯度下降法、拟牛顿法,三者并称是机器学习中最常见的三大类迭代法。 ?
这里主要以简单的牛顿迭代法介绍非线性方程的求解,维基百科对“牛顿迭代法”的解释: Newton's method From Wikipedia, the free encyclopedia Jump...牛顿法就是一种迭代求解非线性方程的方法。 好了,我们自己动手实现牛顿迭代法吧。我们求解方程2*x=exp(-x)的解吧。...return (2*x - Math.exp(-x)); 3. } 我们知道牛顿迭代法有一个缺点,求根必须已知其导数,这就限制了牛顿迭代法的应用范围。...要注意的是,最后残差并不一定是真正的残差,需要看程序浮点数的位数,比如C语言单精度浮点数有效位数是6-7位,如果计算得到残差为-10次方,那肯定不可信。...实际上,本文所讲的牛顿迭代法在实际科研中应用不多,因为很多时候并不能求解得到有效根。
5 using namespace std; 6 typedef long long ll; 7 const int mo=1e9+7; 8 int pow(int a,int b,int c)...{int ret=1;for(;b;b>>=1,a=1LL*a*a%c)if(b&1)ret=1LL*ret*a%c;return ret;} 9 10 int p[10], q[10]; 11...于是确实发现了一波规律,结论如下: 输入的这个数如果小于等于10,输出这个数 否则输入这个数加(位数减1)>=pow(10,t),其中t表示这个数的位数,大于输出结果为这个数+位数,否则输出这个数+(位数...1; 33 } 34 ans += l - i; 35 } 36 cout << ans << endl; 37 return 0; 38 } C...{++M;nxt[M]=fst[a];fst[a]=M;vb[M]=b;vc[M]=c;}void adde(int a,int b,int c){ad_de(a,b,c);ad_de(b,a,c);}
题目 用牛顿迭代法 求方程 2xxx-4xx+3x-6 的根 2....代码示例 /* 牛顿迭代法 */ #define Epsilon 1.0E-6 /*控制解的精度*/ #include main() { float...x0=x1; x1=x0-(2*x0*x0*x0-4*x0*x0+3*x0-6)/(6*x0*x0-8*x0+3); } printf("方程的根为
一、非线性方程式求根 非线性方程举例: 非线性方程式求根是一个重要的数值计算问题,常用的方法包括二分法、迭代法和牛顿迭代法。...然后,计算区间的中点c = (a + b) / 2,并计算函数在c处的值f(c)。 接下来,根据f(c)与0的关系,确定新的区间[a, c]或[c, b],使得新的区间内仍满足函数值异号的条件。...理论简介 牛顿迭代法是一种快速收敛的求根方法,适用于光滑函数的根。它利用函数的局部线性近似来逼近根的位置。具体步骤如下: 首先,选择一个初始的近似值x0。...x -= delta_x if abs(delta_x) < tolerance: return x return None # 调用牛顿迭代法求解方程的根...(f(root))) else: print("未找到方程的根") 注意,牛顿法要求2阶导不编号,1阶导不为0 输出: 方程的一个根为: -0.3619330489831212
大家好,又见面了,我是你们的朋友全栈君。 一、原理:牛顿迭代法 具体解释:牛顿迭代法求平方根 那我们怎么用牛顿迭代法呢?...首先要明白,牛顿迭代法求的是函数和X轴的交点的横坐标,也就是我们说的根 1)那么第一步就是构建曲线了。...假设有一个数c,我们求它的平方根x,那么有一个等式,x^2 = c;挪到一边就是求 f = x^2 – c的根x 2)带入上面的公式 也就是 3)既然是个迭代,那么就有迭代的开始和结束了 3.1...)迭代的开始,我们可以取c 3.2)迭代的结束,就是和我们预期的很接近。...我们的预期是x^2 = c,那么变一下就是x = c / x 只要这两个数很接近,我们就停止迭代。。
分析: 解法1:牛顿迭代法(牛顿切线法) Newton's Method(牛顿切线法)是由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿死后的1736...既然牛顿迭代法可以用来求解方程的根,那么不妨以方程x^2=n为例,来试着求解它的根。为此。令f(x) = x^2 - n, 也就是相当于求解f(x)=0的解,如上图所示。 ...事实上,这也的确是很多语言中内置的开平方函数的实现方法。牛顿迭代法也同样适用于求解其他多次方程的解。...上图可在浏览器的新标签中打开,高清的 由于int sqrt(int x)接受的参数与返回值均为int型,故⌊√x⌋ ≤ (⌊x/2⌋+1)即等价于强数据类型语言(比如:C++、C、Java等)中的√x(...++提交,除以2改成右移1位后,反而变慢了,12 ms,只打败了4.39%的C++提交...
领取专属 10元无门槛券
手把手带您无忧上云