思路:在包含问题的解空间中,按照深度优先搜索的策略,从根节点出发深度探索解空间树,当探索到某一节点时,先判断该节点是否包含问题的解,如果包含,就从该节点触发继续探索下去,如果不包含该节点的解,则逐层向其祖先节点回溯。
作者 Kenneth O. Stanley & Jeff Clune 夏乙 编译自 Uber Engineering Blog 量子位 出品 | 公众号 QbitAI 在深度学习领域,目前训练有很多层
来源:机器之心本文约1800字,建议阅读8分钟期待即将到来的章节。 深度学习这一领域,对于初学者而言,编程已然令人生畏,而更加令人难以接受的是,深度学习里的数学知识更难。 对于这种困惑,已经有人提前替你想到了,这不今天就为大家推荐一本新书,书中介绍了深度学习中的数学工程。书的名字为《 The Mathematical Engineering of Deep Learning 》,顾名思义,这是一本专攻数学知识的书籍。 不过这本书还在持续更新中,目前前两章内容已经放出,大家可以查阅。 本书提供了在深度学习领域
机器之心报道 编辑:陈萍 期待即将到来的章节。 深度学习这一领域,对于初学者而言,编程已然令人生畏,而更加令人难以接受的是,深度学习里的数学知识更难。 对于这种困惑,已经有人提前替你想到了,这不今天就为大家推荐一本新书,书中介绍了深度学习中的数学工程。书的名字为《 The Mathematical Engineering of Deep Learning 》,顾名思义,这是一本专攻数学知识的书籍。 不过这本书还在持续更新中,目前前两章内容已经放出,大家可以查阅。 本书提供了在深度学习领域关于数学工程方面的内
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 期待即将到来的章节。 转自《机器之心》 深度学习这一领域,对于初学者而言,编程已然令人生畏,而更加令人难以接受的是,深度学习里的数学知识更难。 对于这种困惑,已经有人提前替你想到了,这不今天就为大家推荐一本新书,书中介绍了深度学习中的数学工程。书的名字为《 The Mathematical Engineering of Deep L
前言:本系列将集中展示PaddlePaddle的开源项目,即PaddlePaddle研发团队在深度学习领域的前沿研究成果。首先展示DeepNav自动驾驶船项目,本次呈现背景以及支撑理论,后续将逐步呈现项目从设计到落地的全过程。文章素材来源于百度美国研究院王益老师的知乎专栏,希望能够给大家带来新启发。
给大家介绍一个新的深度学习优化器,Ranger,同时具备RAdam和LookAhead的优点,一行代码提升你的模型能力。
选自Uber 作者:Kenneth O. Stanley、Jeff Clune 机器之心编译 参与:陈韵竹、刘晓坤 在深度学习领域,对于具有上百万个连接的多层深度神经网络(DNN),现在往往通过随机梯
深度优先遍历简称DFS(Depth First Search),广度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种方式。
来源:专知本文为论文介绍,建议阅读5分钟本文旨在探索一条新的研究路线,即解释引导学习(EGL),通过XAI技术干预深度学习模型的行为,共同提高深度神经网络的可解释性和泛化性。 近年来,深度神经网络(Deep Neural Networks, DNNs),包括卷积神经网络(Convolutional Neural Networks, cnn)和图神经网络(Graph Neural Networks, GNNs)的快速发展,使得图像和图结构数据等几何数据的表示学习得到了快速的发展,并取得了显著的进展。然而,d
今天给大家介绍DeepMind人工智能研究团队负责人Matthew Botvinick在Neuron上发表的文章“Deep Reinforcement Learning and Its Neuroscientific Implications”。作者在文章中提供了深度强化学习(RL)的高层次介绍,讨论了深度RL在神经科学中的应用,并调查了它对大脑和行为研究的更广泛的影响。
AI 科技评论按:一直低调的 Uber AI 研究院近日连发 5 篇论文,介绍了他们在基因算法(genetic algorithm)、突变方法(mutation)和进化策略(evolution str
尽管在很多情况下回溯法和DFS是紧密相关的,但它们并不总是等价的。回溯法更侧重于问题的求解策略,而DFS更侧重于图的遍历策略。然而,在实际应用中,这两个概念经常交织在一起。
AI可以说是2018年最大的科技话题。从Google Duplex的人为模仿,Spotify的歌曲推荐,到Uber的自驾车以及五角大楼使用 GoogleAI,该技术似乎提供了一切。你可以说AI已经成为通过计算进步的代名词。然而,并不是所有的AI都是平等的,它需要更有创造性。
深度优先搜索(DFS)是一种用于图或树的遍历算法,它沿着路径直到无法继续前进,然后回退到前一个节点,继续探索其他路径。
作为这个时代码代码的秃头人员,对Redis肯定是不陌生的,如果连Redis都没用过,还真不好意思出去面试,指不定被面试官吊打多少次。
今年 7 月,「深度学习教父」Geoffrey Hinton 和他的团队发表了一篇关于深度神经网络优化器的论文,介绍了一种新的优化器「LookAhead」 (《LookAhead optimizer: k steps forward, 1 step back》,https://arxiv.org/abs/1907.08610)。LookAhead 的设计得益于对神经网络损失空间理解的最新进展,提供了一种全新的稳定深度神经网络训练、稳定收敛速度的方法。
早期一个很难的深度强化学习任务,蒙特祖马的复仇,随着随机网络蒸馏探索取得了重大突破(来源:Parker Brothers Blog)。
人工智能(AI)的快速发展和深度学习技术的进步,为游戏领域带来了许多创新和改变。强化学习作为一种重要的AI技术,在游戏AI中得到了广泛应用。本文将探讨强化学习在游戏领域中的应用,以及在应用过程中面临的挑战和解决方法。
来源:DeepHub IMBA本文约2200字,建议阅读5分钟本文中的实验,将展示 TreeSHAP 实际上有多快。 KernelSHAP 和 TreeSHAP 都用于近似 Shapley 值。TreeSHAP 的速度很快,但是它只能用于基于树的算法,如随机森林和 xgboost。而KernelSHAP 与模型无关。这意味着它可以与任何机器学习算法一起使用。我们将比较这两种近似方法。 本文中的实验,将展示 TreeSHAP 实际上有多快。另外还探索树算法的参数如何影响时间复杂度,这些包括树的数量、深度和特征
KernelSHAP 和 TreeSHAP 都用于近似 Shapley 值。TreeSHAP 的速度很快,但是它只能用于基于树的算法,如随机森林和 xgboost。而KernelSHAP 与模型无关。这意味着它可以与任何机器学习算法一起使用。我们将比较这两种近似方法。
发能够「想象」与「推理」的机器:深度生成模型的原理与应用(Building Machines that Imagine and Reason: Principles and Applications of Deep Generative Models)
导 读 深度学习只能使用实数吗?本文简要介绍了近期一些将复数应用于深度学习的若干研究,并指出使用复数可以实现更鲁棒的层间梯度信息传播、更高的记忆容量、更准确的遗忘行为、大幅降低的网络规模,以及 GAN 训练中更好的稳定性。 深度学习只能使用实数,大家不觉得奇怪吗?或许,深度学习使用复数才是更加奇怪的事情吧(注意:复数是有虚部的)。一个有价值的论点是:大脑在计算的时候不太可能使用复数。当然你也可以提出这样的论点:大脑也不用矩阵运算或者链式法则微分啊。此外,人工神经网络(ANN)具有实际神经元的模型。长期以来
选自arXiv 作者:Zachary Lipton等 机器之心编译 参与:Panda 强化学习是近年来最受关注的人工智能研究方向之一,相关的研究成果也层出不穷,有的甚至引起了全世界的广泛讨论。近日,卡内基梅隆大学、微软研究院、谷歌和 Citadel 等机构在 arXiv 上联合发表了一篇研究论文,提出了一种将深度强化学习应用于对话系统的新技术:BBQ 网络。本论文已被 AAAI 2018 大会接收。论文第一作者为 Zachary Lipton,另外 Citadel 首席人工智能官邓力也是该论文的作者之一,以
开发能够「想象」与「推理」的机器:深度生成模型的原理与应用(Building Machines that Imagine and Reason: Principles and Applications of Deep Generative Models) abstract: 深度生成模型为无监督学习问题提供了一种解决方案,无监督学习这类机器学习系统需要从无标记的数据流中发现出隐藏的结构。因为这些模型是生成式的,所以它们能够对自己所应用的世界生成丰富的意象,后者可以探索数据中的变化,推理所在世界的结构和行为,
在监督学习中,训练数据带有来自神一般的“监督者”的答案。如果生活可以这样,该多好!
思想:对于最新发现的顶点v,如果它还有以此为起点而还未探索的边,沿此边探索。如果v的所有边已经探索完了,再回溯到发现v有起始点的那些边。一直到已经探索了从源起点可到的所有顶点为止。如果还有没探索的顶点,将它定义为一个新的源顶点,继续上述过程。
选自Medium 机器之心编译 参与:Nurhachu Nul、路雪 深度学习只能使用实数吗?本文简要介绍了近期一些将复数应用于深度学习的若干研究,并指出使用复数可以实现更鲁棒的层间梯度信息传播、更高的记忆容量、更准确的遗忘行为、大幅降低的网络规模,以及 GAN 训练中更好的稳定性。 曼德布洛特复数集合:https://en.wikipedia.org/wiki/Mandelbrot_set 深度学习只能使用实数,大家不觉得奇怪吗?或许,深度学习使用复数才是更加奇怪的事情吧(注意:复数是有虚部的)。一个有价
作者 | Alexander Wong, Zhong Qiu Lin, and Brendan Chwyl
之前学习了强化学习的一些内容以及推荐系统的一些内容,二者能否联系起来呢!今天阅读了一篇论文,题目叫《DRN: A Deep Reinforcement Learning Framework for News Recommendation》。该论文便是深度强化学习和推荐系统的一个结合,也算是提供了一个利用强化学习来做推荐的完整的思路和方法吧。本文便是对文章中的内容的一个简单的介绍,希望对大家有所启发。
上期我们一起学习了强化学习中的马尔科夫决策过程的相关知识, 深度学习算法(第35期)----强化学习之马尔科夫决策过程 今天我们学习强化学习中的时间差分学习与Q学习的相关知识。
机器人需要在这个过程中学会如何主动感知和控制,深度学习的流行也为探索这一问题提供了一种值得借鉴和学习的方法。
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
根据腾讯WeTest提供数据显示,70%的互联网用户已有3年以上的互联网经验,对应用内容的需求更加追求高效与个性化,需要产品长期稳定产出优质内容。而随着行业内容、信息“暗战”白刃化,只有最高品质的互联网产品才能从贴身肉搏中杀出新风口。
仓库地址:https://github.com/DA-southampton/Tech_Aarticle/edit/master/README.md
原文链接:http://wetest.qq.com/lab/view/396.html
人工智能、机器学习和深度学习,已成为能够给我们工作、生活和思维带来变革的认知和科技。 面对海量数据,利用人工智能、机器学习和深度学习创造价值是一件既有挑战又有意义的事情。 本文探讨如何学习和应用机器学
来源:专知本文为论文介绍,建议阅读5分钟本文通过对4个具体任务的研究,围绕模型设计、多模态融合、稀疏数据分析、无监督学习、域适应和域泛化等关键问题展开研究。 与2D图像数据相比,3D信息与人类的视觉感知更密切相关,有助于智能机器更好地了解世界。三维信息预测和理解,如结构预测和语义分析,在三维视觉感知中起着重要的作用。具体到3D结构,比如深度数据,虽然我们可以从各种3D传感器中获取它,但在机器学习框架中,仍然有大量的尝试从单个图像、视频序列、立体声数据或多模态数据中预测它。主要原因是3D传感器通常价格昂贵,
有一个图,我们想访问它的所有顶点,就称为图的遍历。遍历图有两种方法:广度优先搜索和深度优先搜索。 图遍历可以用来寻找特定的顶点或寻找两个顶点之间的路径,检查图是否连通。本文将详解图的两种遍历并用TypeScript将其实现,欢迎各位感兴趣的开发者阅读本文。
据估计,可合成的类药化合物的化学空间中存在1023-1060个分子,面对如此巨大的化学空间,即使高通量虚拟筛选技术也难以应对,不过人工智能技术的发展为更加快速有效地探索该化学空间提供了希望。目前,不少基于深度学习的分子生成模型备受关注,它们可以从头设计新分子,有效拓展了可探索的化学空间大小。但是,这些模型往往只是输出类药分子,并不考虑这些分子对于蛋白靶标的活性,而可以直接针对靶标蛋白结构优化输出分子对靶点的亲和性的分子生成模型报道仍非常少见。
深度学习(Deep Learning)当前的成功离不开与大数据的结合,但从业者也渴望摆脱对大量标注样本的依赖。颜水成(YAN Shuicheng),奇虎360首席科学家、360人工智能研究院院长,曾任新加坡国立大学电子与计算机工程系的Dean’s Chair Associate Professor,提出了模拟婴儿自学习逐步获取知识的Baby Learning方法,对于学习模型的自我增强与自我适应非常有价值。近日,CSDN记者采访了颜水成,从研究和应用两个角度对深度学习的进展、问题与未来发展进行剖析,并对深度
作者:Yipeng Mou,Mingming Gong,Huan Fu,Kayhan Batmanghelich,Kun Zhang,Dacheng Tao
机器之心报道 机器之心编辑部 内存友好的深度森林软件包开源了。现在,普通设备也可以跑得动深度森林。 周志华等人一直在推动的深度森林,是探索神经网络以外 AI 领域重要的研究方向之一,在表格数据建模任务中已初现锋芒。但是,由于基于决策树的集成模型在具体实现当中,经常会遇到内存不足,硬件效率不如神经网络等问题,是推动其大规模应用的主要瓶颈之一。 经过 LAMDA 徐轶轩等人的不懈努力,2021 年 2 月 1 日,新的深度森林软件包 DF21 在 GitHub 与开源中国同时开源了。该软件包尝试解决了这一方向
【新智元导读】深度强化学习将有助于革新AI领域,它是朝向构建对视觉世界拥有更高级理解的自主系统迈出的一步。本文将涵盖深度强化学习的核心算法,包括深度Q网络、置信区域策略优化和异步优势actor-critic算法(A3C)。同时,重点介绍深度强化学习领域的几个研究方向。 本文预计在IEEE信号处理杂志“图像理解深度学习”专刊发表。作者Kai Arulkumaran是伦敦帝国理工大学的博士生,Marc Peter Deisenroth是伦敦帝国理工大学的讲师,Miles Brundage是亚利桑那州立大学博士
Exploration and Exploitation(EE问题,探索与开发)是计算广告和推荐系统里常见的一个问题,为什么会有EE问题?简单来说,是为了平衡推荐系统的准确性和多样性。
导读: 根据腾讯WeTest提供数据显示,70%的互联网用户已有3年以上的互联网经验,对应用内容的需求更加追求高效与个性化,需要产品长期稳定产出优质内容。而随着行业内容、信息“暗战”白刃化,只有最高品质的互联网产品才能从贴身肉搏中杀出新风口。 在“互联网+”时代的到来后,移动应用多样化场景和空闲时间分段化,已经催生了多样型用户需求。为了迎合这种多样型需求,移动应用愈发百花齐放,但同时这也意味着产品需要接受更多质量检验,品质为王的趋势致使开发者需要面对更多挑战。 根据Ericsson公开的最新报告显示,智能手
机器之心专栏 作者:刘知远 2017 年 12 月底,清华大学张钹院士做了一场题为《AI 科学突破的前夜,教授们应当看到什么?》的精彩特邀报告。他认为,处理知识是人类所擅长的,而处理数据是计算机所擅长的,如果能够将二者结合起来,一定能够构建出比人类更加智能的系统。因此他提出,AI 未来的科学突破是建立一种同时基于知识和数据的 AI 系统。 我完全赞同张钹老师的学术观点。最近一年里,我们在这方面也做了一些尝试,将语言知识库 HowNet 中的义原标注信息融入面向 NLP 的深度学习模型中,取得了一些有意思的结
领取专属 10元无门槛券
手把手带您无忧上云