文章来源:towardsdatascience 作者:B.Chen 翻译\编辑:Python大数据分析
编者按:数据集可谓是数据科学的练兵场,不管是对菜鸟入门还是老司机上路,能找到一个好用的数据集无异于如虎添翼。以下是编者整理编译的 17 个常用数据集,并列举了适用的典型问题,从菜鸟到老司机,总有一款适合你。 菜鸟入门 1. Iris 数据集 在模式识别文献中,Iris 数据集恐怕是最通用也是最简单的数据集了。要学习分类技术,Iris 数据集绝对是最方便的途径。如果你之前从未接触过数据科学这一概念,从这里开始一定没错,因为该数据集只有 4 列 150 行。 典型问题:在可用属性基础上预测花的类型。 2. 泰坦
熟悉pandas的童鞋估计都知道pandas的describe()和info()函数,用来查看数据的整体情况,比如平均值、标准差之类,就是所谓的探索性数据分析-EDA。
编者按:数据集可谓是数据科学的练兵场,不管是对菜鸟入门还是老司机上路,能找到一个好用的数据集无异于如虎添翼。以下是雷锋网整理编译的 17 个常用数据集,并列举了适用的典型问题,从菜鸟到老司机,总有一款适合你。 菜鸟入门 1. Iris 数据集 在模式识别文献中,Iris 数据集恐怕是最通用也是最简单的数据集了。要学习分类技术,Iris 数据集绝对是最方便的途径。如果你之前从未接触过数据科学这一概念,从这里开始一定没错,因为该数据集只有 4 列 150 行。 典型问题:在可用属性基础上预测花的类型。 2. 泰
@Analytics Vidhya 编者按: 数据集可谓是数据科学的练兵场,不管是对菜鸟入门还是老司机上路,能找到一个好用的数据集无异于如虎添翼。以下是雷锋网整理编译的 17 个常用数据集,并列举了适用的典型问题,从菜鸟到老司机,总有一款适合你。 ◆ ◆ ◆ 菜鸟入门 1. Iris 数据集 在模式识别文献中,Iris 数据集恐怕是最通用也是最简单的数据集了。要学习分类技术,Iris 数据集绝对是最方便的途径。如果你之前从未接触过数据科学这一概念,从这里开始一定没错,因为该数据集只有 4 列 150 行
数据集可谓是数据科学的练兵场,不管是对菜鸟入门还是老司机上路,能找到一个好用的数据集无异于如虎添翼。以下是雷锋网整理编译的 17 个常用数据集,并列举了适用的典型问题,从菜鸟到老司机,总有一款适合你。
对于任何一个将来要实际运用的技能,通过实战,自己亲自将一行行代码敲出来,然后达到自己想要的效果,这个过程是最好的学习方式。
pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe。
数据可视化在数据挖掘中起着非常重要的作用。各种数据科学家花费了他们的时间通过可视化来探索数据。为了加快这一进程,我们需要有合适的工具。
pandas-profiling能够使用pandas的DataFrame数据自动快速生成数据的详细报告,相比自带的describe方法生成的profile要详细的多。
给大家推荐一个Python机器学习、数据分析的好地方:尤而小屋。这里的原创文章高达260+篇,大家一起来看看,可以关注学习起来喔❤️
问题是这些预测对于分类来说是不合理的,因为真实的概率必然在0到1之间。为了避免这个问题,我们必须使用一个函数对p(X)建模,该函数为X的所有值提供0到1之间的输出。Logistic回归是以其核心函数Logistic函数命名的:
一些可视化库和机器学习库有着内置数据集的传统。因为库的文档和案例通常会使用一些数据集来举例、内置数据集后方便用户学习该库的可视化语法,方便复现效果。
我们在利用pandas开展数据分析时,应尽量避免过于「碎片化」的组织代码,尤其是创建出过多不必要的「中间变量」,既浪费了「内存」,又带来了关于变量命名的麻烦,更不利于整体分析过程代码的可读性,因此以流水线方式组织代码非常有必要。
在数据分析的过程中,相信大家用的最多的就是Pandas库,无论是统计分析还是可视化等等,Pandas都给我们提供了诸多便利。今天小编就来和大家说说在Pandas库中那些不为人所熟知但是却十分好用的函数,希望大家看了之后也能够受益匪浅
我们在利用pandas开展数据分析时,应尽量避免过于碎片化的组织代码,尤其是创建出过多不必要的中间变量,既浪费了内存,又带来了关于变量命名的麻烦,更不利于整体分析过程代码的可读性,因此以流水线方式组织代码非常有必要。
在用Python做数据分析的过程中,有一些操作步骤和逻辑框架是很固定的,只需要记住其用法即可。本节内容介绍Pandas模块在数据分析中的常用方法。
提示和技巧总是非常有用的,在编程领域更是如此。有时候,小小的黑科技可以节省你大量的时间和精力。一个小的快捷方式或附加组件有时会是天赐之物,可以成为实用的效率助推器。所以,我在这里介绍下自己编程时最喜欢使用的一些提示和技巧,在这篇文章中汇总起来呈现给大家。有些可能是大家熟悉的,而有些可能是新鲜的,我相信它们会为你下一次处理数据分析的项目时提供便利。
1912年4月14日泰坦尼克号与冰山相撞,断裂成两截后沉入大西洋底3700米处,造成1490人丧生。遇难人数:1490人, 幸存人数:711人, 幸存率为:32.3%。我们从卡梅隆导演的大作《泰坦尼克号》感受的灾难残酷,人的渺小,爱情的伟大,但是从幸存者的数据分析中,我们发现不仅有温情,还有冰冷。我让尝试从数据中脑补一下巨大灾难面前的冰冷与温情,重回泰坦,何去何从?
一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。
这是一篇数据科学领域的翻译文章,名称 Common Patterns for Analyzing Data 数据分析的通用模式。
当我们祝福生日快乐的时候,仅仅是生日快乐显得干瘪,找来的表情包生硬诙谐。可是配合我们共同看过的影视,发过去影视截图,电影里面充沛的感情能在一张图片里表达的淋漓尽致,可我们又能收集到多少影视截图呢,我们日常看电影的时候又怎么会留心这种东西呢?
(具体聊聊在做kaggle项目的时候遇到哪些问题,问题出现的时候我是如何思考的?最后又是如何解决的?)
从一个什么都不懂的小白,到现在字节跳动的数据分析师,我用了大概1年的时间,在这里想给大家分享一下我的转行经历,希望能有一些帮助。
最近重温了一遍泰坦尼克号,又一次为杰克和露丝甜美的爱情感动,两人坦诚真挚的相爱让人神往,一阵幻想过后咬了口嘴边的柠檬,真酸...
Pandas这个库对Python来说太重要啦!因为它的出现,让Python进行数据分析如虎添翼,作为Python里面最最牛逼的库之一,它在数据处理和数据分析方面,拥有极大的优势,受到数据科学开发者的广大欢迎。
这项功能下周才会正式向所有Plus用户开放,但不少提前进行测试的网友都不约而同地发现:
我们目前为止涉及的方法,线性回归,对率回归和 SVM ,它们的模型形式是预定义的。与之相反,非参数学习器事先没有特定的模型结构。在训练模型之前,我们不会推测我们尝试习得的函数f的形式,就像之前的线性回归那样。反之,模型结构纯粹由数据定义。
Micro-Outlier Removal:这个词听起来不错。但是这个术语是本文的作者首创的。所以应该找不到其他相关的资料,但是看完本篇文章你就可以了解这个词的含义。
最后只选取8个维度 Pclass Age SibSp Parch Sex Cabin Fare Embarked。dummy编码进行维度扩展。
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas
总有一些小贴士和技巧在编程领域是非常有用的。有时,一个小技巧可以节省时间甚至可以挽救生命。一个小的快捷方式或附加组件有时会被证明是天赐之物,并能真正提高生产力。因此,我总结了一些我最喜欢的一些贴士和技巧,我将它们以本文的形式一起使用和编译。有些可能是大家相当熟悉的,有些可能是比较新的,但我确信它们将在下一次您处理数据分析项目时派上用场。
我们都知道,教科书上所学与实际操作还是有出入的,那关于机器学习有什么好的项目可以实操吗?
这篇文章是今天发布的CTGAN的补充,我们可以使用pandas的cut函数将数据进行离散化、将连续变量进行分段汇总,这比写自定义函数要简单的多。
本号之前就已经有一篇文章关于探索《泰坦尼克号》的生还数据案例,文章中完全使用 Python 分析出一系列数据背后的逻辑。
Python数据分析可视化–Titanic 这篇文章主要介绍泰坦尼克幸存者问题的数据处理以及可视乎部分,关于机器学习部分: 机器学习2:KNN决策树探究泰坦尼克号幸存者问题 文章目录 Python数据分析可视化--Titanic 导入数据 数据探索 判断是否存在缺失值 关系探索 仓位和存活率关系 性别和存活率关系 兄弟姐妹和孩子对于存活关系 数据可视化分析 数据预处理 import pandas as pd import seaborn as sns import matplotlib.pyplot
参考链接: Python线性回归的波士顿房屋Kaggle挑战 | 机器学习 Machine Learning
今天向大家介绍一下Kaggle,感觉上面实在是太好玩了。。。所以一定要安利,安利,安利(重要的事情说三遍)
主要包括计算机科学中基本的算法与数据结构,结合算法思想和Leetcode实战,总结介绍。
领取专属 10元无门槛券
手把手带您无忧上云