首页
学习
活动
专区
圈层
工具
发布

Pandas 秘籍:1~5

对于 Pandas 用户来说,了解序列和数据帧的每个组件,并了解 Pandas 中的每一列数据正好具有一种数据类型,这一点至关重要。...Pandas 扫描索引标签中的适当行并返回它们。...五、布尔索引 在本章中,我们将介绍以下主题: 计算布尔统计量 构造多个布尔条件 使用布尔索引进行过滤 使用索引选择来替代布尔索引 使用唯一索引和排序索引进行选择 了解股票价格 翻译 SQL WHERE子句...这些布尔值通常存储在序列或 NumPy ndarray中,通常是通过将布尔条件应用于数据帧中的一个或多个列来创建的。...几乎可以在同一时间查找每个索引位置,而不管其长度如何。 更多 布尔选择比索引选择具有更大的灵活性,因为可以对任意数量的列进行条件调整。 在此秘籍中,我们使用单列作为索引。

42.8K10

一文介绍Pandas中的9种数据访问方式

"访问 切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...4. isin,条件范围查询,一般是对某一列判断其取值是否在某个可迭代的集合中。即根据特定列值是否存在于指定列表返回相应的结果。 5. where,妥妥的Pandas仿照SQL中实现的算子命名。...这里仍然是执行条件查询,但与直观不大相符的是这里会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值 ? 6. query,提到query,还得多说两句。...在Spark中,filter是where的别名算子,即二者实现相同功能;但在pandas的DataFrame中却远非如此。...在DataFrame中,filter是用来读取特定的行或列,并支持三种形式的筛选:固定列名(items)、正则表达式(regex)以及模糊查询(like),并通过axis参数来控制是行方向或列方向的查询

4.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    二、查找 单条件查找 在SQL中,WHERE子句用于提取那些满足指定条件的记录,语法如下 SELECT column_name,column_name FROM table_name WHERE column_name...而在pandas中,按照条件进行查找则可以有多种形式,比如可以将含有True/False的Series对象传递给DataFrame,并返回所有带有True的行 ?...在pandas中的等价操作为 ? 注意,在上面代码中,我们使用size()而不是count() 这是因为count()将函数应用于每一列,并返回每一列中非空记录的数量!...({'key': ['B', 'D', 'D', 'E'], ....: 'value': np.random.randn(4)}) 内连接 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行...全连接 全连接返回左表和右表中的所有行,无论是否匹配,但并不是所有的数据库都支持,比如mysql就不支持,在SQL中实现全连接可以使用FULL OUTER JOIN SELECT * FROM df1

    4.2K31

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...在 Excel 中,您将下载并打开 CSV。在 pandas 中,您将 CSV 文件的 URL 或本地路径传递给 read_csv()。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....If/then逻辑 假设我们想要根据 total_bill 是小于还是大于 10 美元,来创建一个具有低值和高值的列。 在Excel电子表格中,可以使用条件公式进行逻辑比较。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    24.3K20

    SQL、Pandas和Spark:常用数据查询操作对比

    = 3)where。数据过滤在所有数据处理流程中都是重要的一环,在SQL中用关键字where实现,在Pandas和Spark中也有相应的接口。 Pandas。...where关键字的,不过遗憾的是Pandas中的where和Numpy中的where一样,都是用于对所有列的所有元素执行相同的逻辑判断,可定制性较差。...但在具体使用中,where也支持两种语法形式,一种是以字符串形式传入一个类SQL的条件表达式,类似于Pandas中query;另一种是显示的以各列对象执行逻辑判断,得到一组布尔结果,类似于Pandas中...Pandas:Pandas中groupby操作,后面可接多个关键字,常用的其实包括如下4类: 直接接聚合函数,如sum、mean等; 接agg函数,并传入多个聚合函数; 接transform,并传入聚合函数...等; 接agg函数,并传入多个聚合算子,与Pandas中类似; 接pivot函数,实现特定的数据透视表功能。

    3K20

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    本文将介绍20个常用的 Pandas 函数以及具体的示例代码,助力你的数据分析变得更加高效。 ? 首先,我们导入 numpy和 pandas包。...where函数首先根据指定条件定位目标数据,然后替换为指定的新数据。...重要的一点是,pandas 和 numpy的where函数并不完全相同。我们可以得到相同的结果,但语法存在差异。Np.where还需要指定列对象。...我们也可以使用melt函数的var_name和value_name参数来指定新的列名。 11. Explode 假设数据集在一个观测(行)中包含一个要素的多个条目,但您希望在单独的行中分析它们。...inner:仅在on参数指定的列中具有相同值的行(如果未指定其它方式,则默认为 inner 方式) outer:全部列数据 left:左一dataframe的所有列数据 right:右一dataframe

    6.9K30

    Python 数据处理:Pandas库的使用

    你可以传入排好序的字典的键以改变顺序: # 在这个例子中,sdata中跟states索引相匹配的那3个值会被找出来并放到相应的位置上, # 但由于 "California" 所对应的sdata值找不到...下表对DataFrame进行了总结: 类型 描述 df[val] 从DataFrame选取单列或一组列;在特殊情况下比较便利:布尔型数组(过滤行)、切片(行切片)、或布尔型DataFrame(根据条件设置值...Series的索引匹配到DataFrame的列,然后沿着行一直向下广播: print(frame - series) 如果某个索引值在DataFrame的列或Series的索引中找不到,则参与运算的两个对象就会被重新索引以形成并集...在本例中,我们的目的是匹配DataFrame的行索引(axis='index' or axis=0)并进行广播。...计算Series中的唯一值数组,按发现的顺序返回 value_counts 返回一个Series,其索引为唯一值,其值为频率,按计数值降序排列 有时,你可能希望得到DataFrame中多个相关列的一张柱状图

    25.5K10

    panda python_12个很棒的Pandas和NumPy函数,让分析事半功倍

    1. allclose()  Allclose() 用于匹配两个数组并且以布尔值形式输出。如果两个数组的项在公差范围内不相等,则返回False。...()  Where() 用于从满足特定条件的数组中返回元素。...它返回在特定条件下值的索引位置。这差不多类似于在SQL中使用的where语句。请看以下示例中的演示。  ...Pandas非常适合许多不同类型的数据:  具有异构类型列的表格数据,例如在SQL表或Excel电子表格中  有序和无序(不一定是固定频率)的时间序列数据。  ...以下是Pandas的优势:  轻松处理浮点数据和非浮点数据中的缺失数据(表示为NaN)  大小可变性:可以从DataFrame和更高维的对象中插入和删除列  自动和显式的数据对齐:在计算中,可以将对象显式对齐到一组标签

    6.3K00

    MySQL查询优化-基于EXPLAIN

    range:以范围的形式扫描数据,对索引的扫描开始于某一点,返回匹配值域的行,常见于使用 >, 的查询中。...对于具有用户定义的聚集索引的 InnoDB 表, 即使从Extra列中没有使用索引, 也可以使用该索引。...ICP 是在取出索引的同时,判断是否可以根据索引当中的列进行 where 条件过滤,将 where 条件的过滤放在了存储引擎。 ICP 的执行步骤是: 在存储引擎获取一条索引基础数据。...对于满足下推条件的数据,存储引擎根据 B+ 树的 key,定位基表的行数据,并返回整行数据至 server 层。...如果没有创建 PRIMARY KEY 索引,但表具有一个或多个 UNIQUE 索引,则 MySQL 将删除第一个 UNIQUE 索引。 如果从表中删除了某列,则索引会受到影响。

    1.9K20

    python数据科学系列:pandas入门详细教程

    、数据分析和数据可视化全套流程操作 pandas主要面向数据处理与分析,主要具有以下功能特色: 按索引匹配的广播机制,这里的广播机制与numpy广播机制还有很大不同 便捷的数据读写操作,相比于numpy...为了沿袭字典中的访问习惯,还可以用keys()访问标签信息,在series返回index标签,在dataframe中则返回columns列名;可以用items()访问键值对,但一般用处不大。...切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...isin/notin,条件范围查询,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值...如下实现对数据表中逐元素求平方 ? 广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。

    21.5K31

    MySQL-多表操作

    在含有子查询的语句中,子查询必须书写在圆括号()内。 ➢SQL语句首先会执行子查询中的语句。 ➢然后再将返回的结果作为外层SQL语句的过滤条件。...判断指定的条件是否在子查询语句返回的结果集中。 然后根据比较结果完成相关需求的操作。 行子查询 当子查询的结果是一条包含多个字段的记录(一行多列)时,称为行子查询。...FROM 数据源[WHERE] [GROUP BY] [HAVING] [ORDER BY] [LIMIT]); 行子查询返回的一条记录与指定的条件比较,比较的运算符通常使用=。...子查询的结果必须全部与指定的字段相等才满足WHERE指定的条件。 行在相等比较(=或)时,各条件之间是与的逻辑关系。 在不等比较(或!)时,各条件之间是或的逻辑关系。...外键约束 添加外键约束 外键指的是-一个表中引用另一个表中的一列或多列,被引用的列应该具有主键约束或唯一性约束, 从而保证数据的一-致性 和完整性。 ➢被引用的表称为主表。

    4K20

    python df 列替换_如何用Python做数据分析,没有比这篇文章更详细的了(图文详情)...

    代码是最简模式,里面有很多可选参数设置,例如列名称,索引列,数据格式等等。感兴趣的朋友可以参考 pandas 的  官方文档。  ...“定位条件”在“开始”目录下的“查找和选择”目录中。  查看空值  Isnull 是 Python 中检验空值的函数,返回的结果是逻辑值,包含空值返回 True,不包含则返回 False。...Python 中需要使用 ort_values 函数和 sort_index 函数完成排序。  排序  在 python 中,既可以按索引对数据表进行排序,也可以看制定列的数值进行排序。...Where 函数用来对数据进行判断和分组,下面的代码中我们对 price 列的值进行判断,将符合条件的分为一组,不符合条件的分为另一组,并使用 group 字段进行标记。  ...high','low')  where  除了 where 函数以外,还可以对多个字段的值进行判断后对数据进行分组,下面的代码中对 city 列等于 beijing 并且 price 列大于等于 4000

    5.4K00

    【图文详解:索引极简教程】SQL 查询性能优化原理

    多个单列索引在多条件查询时优化器会选择最优索引策略,可能只用一个索引,也可能将多个索引全用上!...但多个单列索引底层会建立多个B+索引树,比较占用空间,也会浪费一定搜索效率,故如果只有多条件联合查询时最好建联合索引!...在实际工作中,多样化的数据读取需求使得很难为所有的列赋予等值比较,更为常见的是LIKE、BETWEEN、>、的正是使用非等值比较的查询条件。...在没有为组合索引的第一列赋予使用“=”比较查询条件时,即使为后面的列赋予了使用“=”查询条件也不会缩减数据的查询范围。...但是由于在C1+C2的索引中没有使用列C3,所以当查询条件WHERE C1=’A’ and C3=’333’,为了检验满足C1=’A’的行是否满足C3=’333’就必须从表中读取数据。

    96321
    领券