构建的矩阵会跟之前全局视觉文本的匹配的相似度矩阵一起加到 loss 里面去做优化。...具体的做法如上图所示,首先第一步是采用 contrast learning 的方式构建了视频和文本的相似度矩阵,相似度矩阵的对角线均为正样本,对角线以外都是负样本,接下来根据对角线上面的相似度的值来判断当前的正样本是难样本还是简单样本...比如现在常用的 Pairwise loss 更多是通过做二值量化来判断视频和文本之间是否相似,属于粗粒度的识别,本质上是一个二分类。...该模块的核心理念是,在提供候选视频以及查询视频后,将候选视频和查询视频的关键帧的特征进行两两对比,构建出相似性矩阵。在特征相似性图上可以看到部分相似度值会更高,且具有一定的连续性。...A8:这是因为在今天的分享里实际上都是视频帧级别信息,视频片段作为其中重要组成部分,与其底层库及视频关键帧之间的匹配,共同构建了类似于相似度的矩阵特征向量矩阵。
当一个关键帧通过筛选程序删除时,数据库也会相应更新。 由于关键帧之间可能会存在视图上的重叠,因此检索数据库时,可能返回的结果不止一个高分值的关键帧。...算法的步骤是: 1.查找初始的匹配点对: 从当前帧中提取ORB特征 F c F_c Fc(只在最好的尺度上),与在参考帧 F r F_r Fr搜索匹配点对 x c ↔ x r x_c\leftrightarrow...每次迭代中,我们给每个模型M(H表示单映射,F表示基本矩阵)计算一个分值SM: 其中, d c r 2 d_{cr}^2 dcr2和 d r c 2 d_{rc}^2 drc2是帧到帧之间的对称传递误差...对Ki中每个未匹配的ORB特征,我们在其他关键帧的未匹配云点中进行查找,看是否有匹配上的特征点。这个匹配过程在第三部分第E节中有详细阐述,然后将那些不满足对级约束的匹配点删除。...在TUM RGB-D数据集中,我们可以通过相似变换对齐轨迹的关键帧和基准。图11是定性比较的结果,图12是论文[25]中的最新单目SLAM在视频00,05,06,07和08上执行的结果。
本文利用语义信息构建了局部和全局的描述子。全局的描述子来高效的查找最相似的前K个闭环候选帧,局部的描述子用来计算当前帧和闭环候选帧之间的距离。...(这里如果是基于稳定图层的闭环策略,这个假设应该就不成立了,但是可以利用潜在运动的物体去匹配,只不过需要给他一个比较小的权重) 本文采用RangNet++来检测3D激光数据的语义信息。...每次扫描得到的图描述符都存储在数据库中,当需要查询点云的时候,利用构建kd树来执行k近邻算法来快速得到最相似的N个候选闭环帧。 C. 顶点匹配 在本节,我们介绍顶点描述符来描述图中的顶点。...然后我们利用欧式距离找到当前点云中顶点的描述符和候选帧中顶点描述符的匹配关系。 D. 几何验证 该步骤为每个闭环候选帧选择一组几何一致的对应点。利用RANSAC来优化选取选取的对应点。...对于每个候选帧,我们用下边这个公式来评估闭环的loss: ? C代表当前扫描和闭环候选帧优化后的对应点的集合,T表示变换矩阵,c_iq和c_ic代表第i个C中的属于当前扫描和闭环候选帧的3D点。
但是到目前为止,针对于LOAM并没有开源的代码数据集。本文的主贡献是: 研究出来一个快速的闭环检测的方法来检测两个关键帧的相似度 把闭环检测,地图对齐,位姿优化集成到LOAM中。...通过LOAM将与新关键帧相对应的原始点云配准到全局地图中,以计算其2D直方图。将计算的2D直方图与数据库进行比较,该数据库包含由所有过去的关键帧组成的全局地图的2D直方图,以检测可能的闭环。...算法一:新帧配准 输入:第k帧的点云,当前的地图,利用LOAM估计出来的相机位姿(R_k,T_k)对于新帧中的每个点: 把每个点利用位姿转换到全局坐标系 利用公式1计算cell的中心 计算中心点的哈希值索引...如果这个哈希值不在哈希表 利用中心值创建一个新的cell 把地图的哈希索引的值插入到哈希表中 把中心值插入到地图的八叉树中 把这个点添加到cell中 更新cell的平均值 更新协方差矩阵 2D直方图的旋转不变性...和yaw确定这个cell在矩中的位置 对每个2D直方图进行高斯滤波以提升鲁棒性 快速闭环检测 通过计算新帧的2D直方图和其他所有帧的相似度来检测闭环,这个关键帧和地图匹配然后地图利用位姿图优化的方进行更新
进行相似度计算,计算前后两帧目标之间的匹配程度(前后属于同一个目标的之间的距离比较小,不同目标的距离比较大) 数据关联,为每个对象分配目标的ID。...**匈牙利算法:**解决的是一个分配问题,在MOT主要步骤中的计算相似度的,得到了前后两帧的相似度矩阵。匈牙利算法就是通过求解这个相似度矩阵,从而解决前后两帧真正匹配的目标。...这部分sklearn库有对应的函数linear_assignment来进行求解。 SORT算法中是通过前后两帧IOU来构建相似度矩阵,所以SORT计算速度非常快。...,用于限制代价矩阵中过大的值。...代价矩阵中的距离是Track和Detection之间的表观相似度,假如一个轨迹要去匹配两个表观特征非常相似的Detection,这样就很容易出错,但是这个时候分别让两个Detection计算与这个轨迹的马氏距离
对于一组输入帧,SIFT提取特征。图像匹配使用Best Bin First(BBF)算法来估计输入帧之间的初始匹配点。为了去除不属于重叠区域的不需要的角,使用RANSAC算法。...它删除图像对中的错误匹配。通过定义帧的大小、长度和宽度来实现帧的重投影。最后进行拼接,得到最终的输出拼接图像。在拼接时,检查场景每帧中的每个像素是否属于扭曲的第二帧。...如果是,则为该像素分配来自第一帧的对应像素的值。SIFT算法既具有旋转不变性,又具有尺度不变性。SIFT非常适合于高分辨率图像中的目标检测。它是一种鲁棒的图像比较算法,虽然速度较慢。...基于图像强度值计算在两个图像中的每个位移(shifts)的“窗口”之间的相似性 $$NCC(u)=frac{sumi[I1(xi)-bar{I1}][I_2(x_i u)-bar{I_2}] }{sqrt...RANSAC步骤 随机选取N个数据(3个点对) 估计参数x(计算变换矩阵H) 根于使用者设定的阈值,找到M中合适该模型向量x的的数据对总数量K( 计算每个匹配点经过变换矩阵后到对应匹配点的距离,根据预先设定的阈值将匹配点集合分为内点和外点
,simhash可以指定划分的维度; 第三个参数:bands(b),签名矩阵分块,分为不同的部分; 第四个参数:行数row(r),r=h/b,签名矩阵每一块有r行(r个文本); 第五个参数:相似性...上述结果比较符合预期的就是,在低精度的情况下超过阈值的,相似性J立刻变得极高,判定为匹配对。...———————————————————————————————————————————— 拓展一:应用场景 LSH的应用场景很多,凡是需要进行大量数据之间的相似度(或距离)计算的地方都可以使用LSH来加快查找匹配速度...(3)图像检索 在图像检索领域,每张图片可以由一个或多个特征向量来表达,为了检索出与查询图片相似的图片集合,我们可以对图片数据库中的所有特征向量建立LSH索引,然后通过查找LSH索引来加快检索速度。...(5)指纹匹配 一个手指指纹通常由一些细节来表征,通过对比较两个手指指纹的细节的相似度就可以确定两个指纹是否相同或相似。
求跟踪器所有目标状态与本帧检测的Box的IOU,通过匈牙利算法(Hungarian Algorithm),得到IOU最大的唯一匹配(数据关联部分),在去掉匹配值小于IOU_threshold的匹配对;...用本帧中匹配到的目标检测Box去更新卡尔曼跟踪器,计算卡尔曼增益,状态更新和协方差更新。...并将状态更新值输出,作为本帧的跟踪Box。对于本帧中没有匹配到的目标重新初始化跟踪器,卡尔曼跟踪器联合了历史跟踪记录,调节历史Box与本帧Box的残差,更好地匹配跟踪id。...需要注意的是这个值过大过小都会使滤波效果变差,且R取值越小收敛越快,所以可以通过实验手段寻找合适的R值再利用它进行真实的滤波。 11、B:是将输入转换为状态的矩阵。...上图非常清晰地解释了如何进行级联匹配,首先使用外观模型(ReID)和运动模型(马氏距离)来计算相似度矩阵,得到cost矩阵以及门控矩阵,用于限制代价矩阵中过大的值。
求跟踪器所有目标状态与本帧检测的Box的IOU,通过匈牙利算法(Hungarian Algorithm),得到IOU最大的唯一匹配(数据关联部分),在去掉匹配值小于IOU_threshold的匹配对;...用本帧中匹配到的目标检测Box去更新卡尔曼跟踪器,计算卡尔曼增益,状态更新和协方差更新。...并将状态更新值输出,作为本帧的跟踪Box。对于本帧中没有匹配到的目标重新初始化跟踪器,卡尔曼跟踪器联合了历史跟踪记录,调节历史Box与本帧Box的残差,更好地匹配跟踪id。...这么理解吧,假设本来协方差矩阵是一个正态分布,那么连续的预测不更新就会导致这个正态分布的方差越来越大,那么离均值欧氏距离远的点可能和之前分布中离得较近的点获得同样的马氏距离值。...上图非常清晰地解释了如何进行级联匹配,首先使用外观模型(ReID)和运动模型(马氏距离)来计算相似度矩阵,得到cost矩阵以及门控矩阵,用于限制代价矩阵中过大的值。
通过计算描述子来连接这些图像块中相似的值,最后利用random orthoprojections的方法降低维度。这就可以产生一个很快的描述子来满足实时性的要求。...描述子是二进制的向量,其代表图像块中两个像素点灰度值的比较结果。图像块需要预先利用高斯核函数滤波。根据先前给定的图像块大小Sb,在图像块中利用离线的方法随机的选择像素点对。...D.几何一致性检测 我们在两个匹配的闭环候选帧用几何检测。这个检验是通过它至少12个对应点利用随机样本一致性(RANSAC)找到I_t和I_t'之间的一个基础矩阵。...为了在I_t和I_t'获得对应点,直接查找I_t'帧的直接索引,仅对在词袋中l级的相同节点中的特征进行比较。这个条件加快了特征匹配的计算速度。...我们只需要基本矩阵进行验证,但注意,在计算之后,我们可以提供与下面运行的任何SLAM算法匹配的图像之间的数据关联,而不需要额外的成本(有了F矩阵就可以解算RT了)。
通过计算两个矩阵之间的距离,我们将当前的单应性矩阵与最后一个单应性矩阵进行比较: np.linalg.norm(Hinv – self.last_hinv) 但是,我们只想考虑self.last_hinv...在这里,我们将进一步跟踪有趣的特征,并考虑通过研究图像帧之间的相似性,我们可以了解整个视觉场景。...+= 1 查找相机矩阵 一旦我们收集了足够的数据(即self.record_cnt达到self.record_min_num_frames的值),该算法就可以执行校准了。...使用光流的警告是,它最适用于相同硬件连续拍摄的图像,而丰富特征对此几乎一无所知。 查找相机矩阵 现在我们已经获得了关键点之间的匹配,我们可以计算出两个重要的相机矩阵:基本矩阵和基本矩阵。...显着性检测器将在当前帧上运行,而均值漂移跟踪器将尝试从当前帧中的前一帧查找原型对象。 仅保留两种算法在位置和大小上都一致的边界框。 这将消除被两种算法之一误标记为原型对象的离群值。
2 回顾CLIP CLIP的motivation主要有三点: 1)当前的CV数据集标注劳动密集,成本高昂; 2)当前的模型只能胜任一个任务,迁移到新任务上非常困难; 3)当前模型泛化能力较差,很难在新的数据上达到比较好的效果...size x batch size的相似度矩阵,对角线上的相似度值就是正样本的相似度值,因此在训练过程中优化目标就是让正样本的相似度值尽可能大。...entropy损失函数来优化,而是采用了比较相似度矩阵和Ground Truth的相似度矩阵的KL散度进行优化。...Transformer或者LSTM,然后将输出的特征求平均得到视频表示,然后基于点积求相似度,这种方式能够进行帧之间的交互; 第三种方式是将文本token和帧token都输入到一个Transformer...中,进行帧与帧和帧与文本之间的交互,最后用2个线性层获得最终的相似度。
在跟踪中,下一帧的目标要和上一帧的目标做一个匹配,才能确定是同一个目标。那么同样是行人,如何确定检测框是同一个目标呢?可以对检测框的目标与上一针所有检测框目标进行相似度匹配。...Siamese网络的优点在于能够学习样本之间的相似性,并且对于训练数据中不平衡的类别分布也相对较为鲁棒。...SimGNN的核心思想是通过图神经网络的方式对图数据进行表示学习,然后通过学到的表示来计算节点之间的相似度。SimGNN步骤:图数据表示:将图数据表示为节点特征矩阵和邻接矩阵的组合形式。...节点特征矩阵用于表示每个节点的特征向量,邻接矩阵表示图中节点之间的连接关系。...03 总结在目标跟踪中,相似度计算是用来度量当前帧中的目标与跟踪器所预测的目标之间的相似程度。基于相似度的计算结果,可以用于确定当前帧中最可能的目标位置或更新跟踪器的状态。
为了减少计算时间,避免错误数据关联的可能性,可以用第一幅图像的特征2D位置定义一个搜索窗口在第2幅图像中进行搜索,并采用特征描述之间的相似度进行度量。...,比如ORB,SIFT和SURF,可能会采用L1范数(向量中各个元素绝对值之和,就是绝对值相加,又称曼哈顿距离),L2范数(就是欧几里德距离)或汉明距离,为了加速匹配的搜索过程,可以采用KD树或词袋(BoW...3D-3D的数据对应主要用来估计和校正回环的累积误差,计算能使回环对齐的相似变换。在RGBD或双目系统中,还可以利用两帧之间的3D结构信息进行三维ICP配准来计算相对位姿,实现三维结构的对齐。...特征匹配采用ZMSSD,由于没有考虑图像形变,匹配过程对运动模糊和由于相机旋转比较敏感,因此在初始化过程中对用户的运动状态要求比较严格。...关键帧包含了位姿信息和与地图点云的观测关系,这些关键帧构成了位姿图顶点,它们之间的连接构成了位姿图的边,两个关键帧之间共视的地图点的个数就是这条边的权值。 下图是地图构建的一般流程。
特征恢复 1、检测到回环时,通过BRIEF描述子匹配找到对应关系,建立局部滑动窗口与回环候选帧之间的连接。 2、直接描述子匹配可能会造成大量异常值,使用两步进行几何上的异常值剔除。...)、VIO里程计信息PQV(odometry)、关键帧中的3D点云(keyframe_point)、IMU传播值(imu_propagate)。...4)将当前帧放入优化队列中 5、获取VIO当前帧的位姿P、R,根据偏移量计算得到实际位姿。...1、查询字典数据库,得到与每一帧的相似度评分ret 2、添加当前关键帧到字典数据库中 3、通过相似度评分判断是否存在回环候选帧 4、如果在先前检测到回环候选帧再判断:当前帧的索引值是否大于50,即系统开始的前...pt(0.f, 0.f); cv::Point2f pt_norm(0.f, 0.f);//对关键帧中每个特征点的描述子与回环帧的所有描述子匹配,如果能找到汉明距离小于80的最小值和索引即为该特征点的最佳匹配
特征恢复 1、检测到回环时,通过BRIEF描述子匹配找到对应关系,建立局部滑动窗口与回环候选帧之间的连接。 2、直接描述子匹配可能会造成大量异常值,使用两步进行几何上的异常值剔除。...)、VIO里程计信息PQV(odometry)、关键帧中的3D点云(keyframe_point)、IMU传播值(imu_propagate)。...4)将当前帧放入优化队列中 5、获取VIO当前帧的位姿P、R,根据偏移量计算得到实际位姿。...1、查询字典数据库,得到与每一帧的相似度评分ret 2、添加当前关键帧到字典数据库中 3、通过相似度评分判断是否存在回环候选帧 4、如果在先前检测到回环候选帧再判断:当前帧的索引值是否大于50,即系统开始的前...matched_2d_old_norm.push_back(pt_norm); } } bool KeyFrame::findConnection(KeyFrame* old_kf) 该函数的主要目的是寻找并建立关键帧与回环帧之间的匹配关系
扫描匹配:在这一步中输入是上一个关键帧和一个新帧,目标是找到变换矩阵,由于4D雷达的点云含有噪声,不容易提取几何特征(如边和平面),GICP相对于ICP和NDT来说能够输出可接受的结果。...关键帧选择:第一帧被指定为固定的关键帧,而后续的关键帧则根据以下两个条件之一来确定:i) 当前帧和上一个关键帧之间的平移超过阈值δt;ii) 当前帧和上一个关键帧之间的旋转超过阈值δr。...阈值参数根据经验设置如下:δt = 0.5米或2米,δr = 15°。第k和第k+1个关键帧之间的扫描匹配结果被添加到姿势图中,作为SE(3)的二元边。...边的协方差是基于两个关键帧点云的拟合分数来计算的。 回环检测 在这一步中,每个关键帧都与数据库中的关键帧进行比较,以确定是否形成一个回环闭合。...我们会根据帧之间的行驶距离自适应调整搜索半径,一旦找到一个回环,如果候选回环靠近,搜索半径将相应减小; iii) 强制设置2米的高度差阈值,基于气压计提供的高度信息; iv) 确保回环的帧具有相似的偏航角
在分别使用两个相机构建两个相似地图并找到所有匹配的地图点后,外参参数正好是地图之间的变换关系。标定过程仅耗费几十秒时间。所提出的方法的应用要求在表I中可以找到。...使用ORB-SLAM3系统处理图像序列,以创建基于ORB特征的地图。 使用词袋(BoW)模块对两个地图之间的所有关键帧进行相似性检测,找到相似关键帧并匹配地图点。...,该模块可以将特征点转换为向量,因此我们可以通过比较向量之间的距离来找到相似的图像。...然后可以通过它们的ORB描述子来匹配地图点, 用于验证匹配关系,我们可以通过以下公式获得关键帧Ai和Bj之间的相似变换SAiBj: 其中,R是一个正交旋转矩阵,描述了两个参考帧之间的相对方向关系,t是两个参考帧之间的平移向量...相似变换SBAji可以通过式(3)中的双向重投影方法进行优化。 图4. 一对匹配地图点在对应关键帧上的双向重投影。
受到(Sang等,2018年)成功的启发,作者采用扩散方法(DM)比较跨帧的外观表示,类似于图像检索。这个过程产生了相似性矩阵,其中表示在前一帧中检测到的个体数,表示在后续帧中检测到的个体数。...其中中的值表示如下: 其中表示第帧中的第个个体的外观与第帧中的第个个体的外观相似性得分,得分范围在0到1之间。 同时,为了确保每个个体在帧中估计的位置与其在帧中的实际位置紧密对齐,作者构建了一个矩阵。...从前面的步骤中可以看出,相似性矩阵 和距离矩阵 都提供了衡量两帧中个体是否相同的可能性的方法。然而,如果仅依赖相似性矩阵,可能会忽略距离问题,可能导致将相同的 ID 分配给空间上相距较远的个体。...因此,采用了运动和外观相结合的帧间关联方法,旨在通过解决分配问题的不同方面来补充这两项指标。最初,将距离矩阵 中的值重新缩放到 0 到 1 之间,得到转换后的距离矩阵,记为 。...在匹配任务中, 中较小的值表示代表同一个体的可能性更高,而 中较大的值则表示代表不同个体的可能性更高。 在获得代价矩阵 后,作者采用匈牙利算法(HA)来利用这两种度量标准确定帧之间的最优匹配。
领取专属 10元无门槛券
手把手带您无忧上云