首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    当我们休息时,我们的大脑运动皮层中重放习得的神经放电序列

    以前在非人类动物中观察到的唤醒过程背后的神经激发模式的离线“重播”被认为是记忆巩固的一种机制。布朗大学(Brown University),麻省总医院(Massachusetts General Hospital)等研究小组的人员通过记录两名参与者的运动皮层的尖峰活动来测试人脑的重播,这两名参与者的大脑皮质接口微电极阵列作为脑机接口试点临床试验的一部参与者在玩一个神经控制的序列复制游戏之前和之后都要打个盹,这个游戏包含一个“重复”的序列与不同的“控制”序列稀疏地交织在一起。与学习一致,两个参与者都比控制序列更准确地执行了重复序列。研究人员将在执行每个序列时导致光标移动的触发率模式与两个休息时间段的触发率模式进行比较。与控制序列相比,与重复序列的相关性在任务休息前后增加得更多,这为大脑中与学习相关的回放提供了直接证据。

    01

    在你休息时,你的大脑运动皮层中重放习得的神经放电序列

    以前在非人类动物中观察到的唤醒过程背后的神经激发模式的离线“重播”被认为是记忆巩固的一种机制。布朗大学(Brown University),麻省总医院(Massachusetts General Hospital)等研究小组的人员通过记录两名参与者的运动皮层的尖峰活动来测试人脑的重播,这两名参与者的大脑皮质接口微电极阵列作为脑机接口试点临床试验的一部参与者在玩一个神经控制的序列复制游戏之前和之后都要打个盹,这个游戏包含一个“重复”的序列与不同的“控制”序列稀疏地交织在一起。与学习一致,两个参与者都比控制序列更准确地执行了重复序列。研究人员将在执行每个序列时导致光标移动的触发率模式与两个休息时间段的触发率模式进行比较。与控制序列相比,与重复序列的相关性在任务休息前后增加得更多,这为大脑中与学习相关的回放提供了直接证据。

    02

    通过沉浸式虚拟现实观察动作增强运动想象训练

    1、研究背景 增强运动想象的一种方法是动作观察,也就是观察与运动想象任务相关的身体部位的运动。先前的研究表明,镜像神经元通过模仿来进行动作的理解和学习,从而引起相应区域的激活。因此,当一个人观察到另一个实体反映想象的身体运动时,动作观察起到了诱导镜像神经元的刺激作用。 2D和3D运动的事件相关去同步化(ERD)模式有显著差异,3D可视化组的ERD增强。更丰富的可视化和对观察到的运动的更强的所有权可诱导更好的ERD发生。 近期,发表在《IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING》杂志上的一篇研究论文通过对握手动作的动作观察,探讨虚拟现实(VR)的丰富沉浸感是否会影响重复的运动想象训练。为了研究显示介质的不同是否会影响进行运动想象时的动作观察,研究者通过两种不同的显示器显示了相同的图形握手动作:沉浸式VR耳机和显示器。此外,该研究以图形情景为刺激,更加强调沉浸式VR中的错觉和具体化对运动想象训练中动作观察的影响。为了检查使用这两种不同介质时的大脑活动,研究者使用了EEG,并识别了感觉运动皮层诱发的神经信号的变化。为了测量不同运动想象任务中空间脑活动模式的可区分性,研究者应用了脑机接口中常用的机器学习技术来学习和区分不同类型的运动想象中的脑活动。

    00

    fMRI中自发性短暂脑网络交互的行为相关性

    几十年来,大脑不同区域的自发波动功能磁共振成像(fMRI)信号如何与行为相关一直是一个悬而未决的问题。这些信号中的相关性,被称为功能连接,可以在几分钟的数据中求平均值,为个人提供一个稳定的功能网络体系结构的表示。然而,这些稳定的特征和行为特征之间的联系已经被证明是由个体解剖学差异所主导的。在此,我们利用核学习工具,提出了评估和比较时变功能连接、时均功能连接、大脑结构数据和非成像受试者行为特征之间关系的方法。我们将这些方法应用于人类连接体项目静息状态fMRI数据,以显示时变的fMRI功能连接,在几秒钟的时间尺度上检测到,与一些不受解剖学支配的行为特征有关。尽管时间平均的功能连接在个体间的fMRI信号变化中占最大比例,但我们发现,智力的某些方面只能用时间变化的功能连接来解释。随着时间变化的fMRI功能连通性与群体行为变异性有一种独特的关系,这一发现表明,它可能反映了稳定神经结构周围的瞬时神经元通信波动。

    03

    从EEG中解码想象的3D手臂运动轨迹以控制两个虚拟手臂

    使用从EEG解码的信息来实现对人工或虚拟手臂的在线控制通常是通过对不同的激活状态进行分类或与对象的不同显性动作相关的感觉运动活动的自愿调节来实现的。然而,一些研究报道了使用更自然的控制方案,例如解码想象的3D手臂运动的轨迹来移动假肢,机器人或虚拟手臂,所有方法都使用离线前馈控制方案。在该项研究中,研究人员首次尝试实现在线控制两个虚拟手臂,从而在3D空间中朝三个目标/手臂移动。使用多重线性回归,从mu,low beta, high beta, 和lowgamma EEG振荡的功率谱密度解码出想象的手臂运动的3D轨迹。研究人员在数据集上进行了实验分析,该数据集记录了三个受试者在七个会话,其中每个会话包括三个实验块:一个离线校准块和两个在线反馈块。利用虚拟武器的预测轨迹计算目标分类精度,并将其与基于滤波器组公共空间模式(FBCSP)的多类分类方法的结果进行了比较,该方法包括互信息选择(MI)和线性判别分析(LDA)模块。

    01
    领券