首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用scikit-learn学习LDA主题模型

在LDA模型原理篇我们总结了LDA主题模型的原理,这里我们就从应用的角度来使用scikit-learn来学习LDA主题模型。...除了scikit-learn,  还有spark MLlib和gensim库也有LDA主题模型的类库,使用的原理基本类似,本文关注于scikit-learn中LDA主题模型的使用。...1. scikit-learn LDA主题模型概述     在scikit-learn中,LDA主题模型的类在sklearn.decomposition.LatentDirichletAllocation...不过在scikit-learn 0.20版本中默认算法会改回到"batch"。建议样本量不大只是用来学习的话用"batch"比较好,这样可以少很多参数要调。...可以说,主题数$K$是LDA主题模型最重要的超参数。 3. scikit-learn LDA中文主题模型实例     下面我们给一个LDA中文主题模型的简单实例,从分词一直到LDA主题模型。

1.9K30

使用 scikit-learn 玩转机器学习——模型评价

现在问题来了,这次抽奖也成功的吸引了你女票的注意,她也知道你在机器学习领域浸淫多年,于是就命令你去建一个机器学习模型来预测她拿奖的准确率,通过研究中奖用户的特征来以此保证她下次一定抽中奖,不然就跟你分手...在进行机器学习模型的比较时,如果一个模型的 ROC 曲线被另一个模型的曲线完全包住,则可断言后者的性能优于前者;若两个模型的 ROC 曲线发生交叉,则在一般情况下很难判定2个模型孰优孰劣,这时,一种较为合理的评比标准便是比较这两个...当然了,如果每次使用精准率和召回率时都要自己亲手撸出来可能骚微还是有一些的麻烦,不过 贴心的 scikit-learn 找就为我们准备好了一切,在 metrics 中封装了所有我们在上述实现的度量,如下是调用演示...对于机器学习模型的性能而言,不光是各样本的特征系数,而且阈值(或称之为截距)的取法对其也有着重要的影响。如下代码是用于绘制精准率与召回率和阈值取值的关系,并绘出其图形: ?...PR 曲线对研究机器学习模型也有着重要的作用,我们也可以从 scikit-learn 中调用相关的函数来绘制 PR 曲线,如下: ? 绘制出 ROC 曲线: ?

64110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用Python与Scikit-learn构建高效机器学习模型

    用Python与Scikit-learn构建高效机器学习模型机器学习是当今数据科学和人工智能领域的重要组成部分。随着数据量的不断增长,如何从中提取有价值的信息成为了一个重要挑战。...Python,作为一种高效且易于学习的编程语言,成为了进行机器学习建模的首选语言之一。本文将通过Scikit-learn库展示如何进行数据建模。什么是Scikit-learn?...Scikit-learn是一个用于机器学习的Python库,提供了一系列简单而高效的工具,用于数据挖掘和数据分析。...K近邻算法(KNN)作为示例,展示如何使用Scikit-learn构建机器学习模型:from sklearn.neighbors import KNeighborsClassifier# 创建KNN模型...未来,随着深度学习和大数据技术的发展,结合Scikit-learn与深度学习框架(如TensorFlow和PyTorch)将为机器学习建模开辟新的方向。

    13930

    Scikit-Learn 高级教程——高级模型

    Python Scikit-Learn 高级教程:高级模型 在机器学习中,选择合适的模型是至关重要的。...本篇博客将深入介绍 Scikit-Learn 中一些高级模型,包括集成学习方法、核方法、以及深度学习模型。我们将提供详细的代码示例,帮助你理解和应用这些高级模型。 1....集成学习方法 集成学习通过组合多个弱学习器的预测结果来构建一个强学习器,以提高模型的性能。在 Scikit-Learn 中,有几种常见的集成学习方法,包括随机森林、AdaBoost 和梯度提升。...深度学习模型 深度学习是机器学习领域的热门话题,Scikit-Learn 中提供了 MLPClassifier 和 MLPRegressor 等多层感知器模型。...总结 本篇博客深入介绍了 Scikit-Learn 中一些高级模型,包括集成学习方法、核方法和深度学习模型。这些模型在不同类型的问题中表现出色,但在选择和使用时需要谨慎考虑其适用性和计算资源。

    26510

    Scikit-Learn 中级教程——模型融合

    Python Scikit-Learn 中级教程:模型融合 模型融合是一种通过结合多个独立模型的预测结果来提高整体性能的技术。...堆叠法 堆叠法是一种通过使用另一个模型(元模型)来结合多个基础模型的预测结果的方法。...在 Scikit-Learn 中,StackingClassifier 和 StackingRegressor 提供了堆叠法的实现。...模型融合的优势 模型融合的优势在于: 提高性能:通过结合多个模型,模型融合可以显著提高整体性能。 降低过拟合风险:模型融合可以减轻个别模型的过拟合风险,提高模型的泛化能力。 5....总结 模型融合是一种强大的技术,能够提高机器学习模型的性能。本篇博客介绍了简单平均法、加权平均法和堆叠法这三种常见的模型融合方法,并提供了使用 Scikit-Learn 的代码示例。

    24110

    机器学习-Python-Scikit-learn

    简介: >Scikit-learn是python很著名的一个机器学习和数据处理的包,这里将一步一步的对scikit—learn进行分解,每种机器学习的方法都会尝试进行一个实例,辅助阅读。...>官网:https://scikit-learn.org/stable/index.html >注:不会多看看官网。 ?...两种安装方式: (1)直接conda安装:conda install scikit-learn (2)或者pip pip install -U scikit-learn 问题设置: >一般来说...>机器学习中的学习问题分为几类: >- 监督学习:数据附带我们想要预测的其他属性 >- (1)分类:输出为一个离散变量,简单来说就是将样本分为已知的几类,例如:将一堆西瓜,分为好瓜,坏瓜两个。...###Training set and testing set: > - 数据集:样本,samples,拥有一系列特征的数据,一般会将数据集随机分为两部分,进行机器学习 > - 训练集:机器学习将在这里学习样本的特征

    37430

    Scikit-learn的模型设计与选择

    目的:本文的目的是从头到尾构建一个管道,以便在合成数据集上访问18个机器学习模型的预测性能。 材料和方法:使用Scikit-learn,为分类任务生成类似Madelon的数据集。...特征选择方法 机器学习可能涉及每个训练实例的数千个功能的问题。从大型队列确定特征的最佳子集是机器学习中的常见任务。通过这样做获得的好处很多。...例如找到最具描述性的特征会降低模型的复杂性,从而更容易找到最佳解决方案,最重要的是,它可以减少训练模型所需的时间。在某些情况下,可以获得轻微的性能提升。...为了解决这个问题,看看图2,在视觉上确定要多少功能,使用(10例),并使用Scikit学习RFE对象与n_features_to_select设置为10。...来自Scikit-learn RFE文档: 给定一个为特征赋予权重的外部估计器(例如,线性模型的系数),递归特征消除(RFE)的目标是通过递归地考虑越来越小的特征集来选择特征......该过程在递归上重复

    2.3K21

    《Scikit-Learn与TensorFlow机器学习实用指南》第4章 训练模型

    第4章 训练模型 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@C-PIG 校对:@PeterHo @飞龙 在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱子来处理...然而,如果你对其内部的工作流程有一定了解的话,当面对一个机器学习任务时候,这些理论可以帮助你快速的找到恰当的机器学习模型,合适的训练算法,以及一个好的假设集。...本章讨论的大部分话题对于机器学习模型的理解,构建,以及神经网络(详细参考本书的第二部分)的训练都是非常重要的。...首先我们将以一个简单的线性回归模型为例,讨论两种不同的训练方法来得到模型的最优解: 直接使用封闭方程进行求根运算,得到模型在当前训练集上的最优参数(即在训练集上使损失函数达到最小值的模型参数)...因此,我们将介绍如何通过学习曲线去判断模型是否出现了过拟合,并介绍几种正则化方法以减少模型出现过拟合的风险。 最后,我们将介绍两个常用于分类的模型:Logistic回归和Softmax回归 阅读全文

    25230

    《Scikit-Learn与TensorFlow机器学习实用指南》 第4章 训练模型

    在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱来处理。...然而,如果你对其内部的工作流程有一定了解的话,当面对一个机器学习任务时候,这些理论可以帮助你快速的找到恰当的机器学习模型,合适的训练算法、以及一个好的假设集。...图 4-24:线性决策边界 就像其他线性模型,逻辑回归模型也可以 ? 或者 ? 惩罚使用进行正则化。Scikit-Learn 默认添加了 ? 惩罚。...注意 在 Scikit-Learn 的LogisticRegression模型中控制正则化强度的超参数不是 ? (与其他线性模型一样),而是它的逆: ? 。 ? 的值越大,模型正则化强度越低。...当你使用LogisticRregression对模型进行训练时,Scikit Learn 默认使用的是一对多模型,但是你可以设置multi_class参数为“multinomial”来把它改变为 Softmax

    94521

    使用scikit-learn进行机器学习

    机器学习:计算机能够学习从数据中做出决策,而无需具体编程! 这里是Datacamp网站机器学习课程的学习记录,课程目录如下: 1.无监督学习 从未标记的数据中发现隐藏的模式,例如聚类。...2.监督学习 预测值是已知的,分析的目的是根据特征预测未见过的数据的目标值 监督式学习的类型: 分类: 目标变量是分类型数据 回归: 目标变量是连续型数据 3.命名约定 feature = predictor...目标变量 = 因变量 = 响应变量) 4.数据要求 无缺失值 numeric格式的数据 数据存储在 pandas DataFrame 或 NumPy array中 先执行探索性数据分析 (EDA) 5.scikit-learn...(X, y) predictions = model.predict(X_new) print(predictions) ## array([0, 0, 0, 0, 1, 0]) 算是又开启了一段新的学习历程...同时开启python的单细胞和机器学习环节。后面继续分享。

    8210

    Scikit-Learn 中级教程——集成学习

    Python Scikit-Learn 中级教程:集成学习 集成学习是一种通过组合多个模型的预测结果来提高模型性能的技术。...在本篇博客中,我们将深入介绍 Scikit-Learn 中的集成学习方法,包括 Bagging、Boosting 和随机森林,并使用代码进行说明。 1....集成学习的优势 集成学习的优势在于: 提高模型性能:通过组合多个模型的预测结果,集成学习能够显著提高模型的性能。...降低过拟合风险:集成学习可以减轻个别模型的过拟合风险,提高模型的泛化能力。 4. 总结 集成学习是一种强大的技术,能够提高机器学习模型的性能。...本篇博客介绍了 Bagging(随机森林)和 Boosting(AdaBoost 和 Gradient Boosting)两类集成学习方法,并提供了使用 Scikit-Learn 的代码示例。

    28910

    Scikit-Learn机器学习要点总结

    一、机器学习总体流程 总体处理流程可以分为:加载数据集、数据预处理、数据集划分、模型估计器创建、模型拟合、模型性能评估 机器学习的一般步骤通常包括以下几个阶段: 数据收集:收集与问题相关的数据,这可能涉及从不同来源获取数据...特征工程:选择合适的特征对数据进行表征,并进行特征提取、转换和选择,以提高模型的性能。 模型选择与训练:选择合适的机器学习算法,并使用训练数据对模型进行训练。...fit_transform():这个方法是 fit() 和 transform() 的结合,既进行学习又进行转换。它首先使用训练数据进行学习,然后将学习到的模型参数应用于数据转换,返回转换后的结果。...这是因为在训练数据上学习得到的模型参数,需要一致地应用于训练数据和测试数据,以保持一致性和可比性。...总结起来,fit() 用于学习模型参数,transform() 用于将模型参数应用于数据转换,而 fit_transform() 则结合了二者,先学习再转换。

    10810

    用scikit-learn开始机器学习

    2018年2月12日·中级·文章·15分钟 在这个使用scikit-learn教程的Beginning Machine Learning中,您将学习如何创建自己的CoreML模型并将其集成到iOS应用程序中...但是,您如何创建和培训机器学习模型?在本教程中,您将通过使用scikit-learn创建自己的机器学习模型,并通过Apple的Core ML框架将其集成到iOS应用程序中。...Python与其最重要的数据科学/机器学习包一起安装。 安装Core ML社区工具 coremltools一个开源的苹果项目日后会使用到scikit学习模型转化成可以在iOS应用使用格式的一个工具。...您用于训练线性回归的三个步骤与绝大多数scikit-learn模型需要使用的步骤完全相同。 接下来,您将使用相同的三种方法来创建和训练支持向量机(SVM)模型。SVM是最流行的机器学习工具之一。...机器学习中最难的部分之一是为该模型找到合适的模型和正确的参数,以获得最佳结果。 如果您想了解有关SVM的更多信息,请查看scikit-learn.org上的文档。

    1.7K10

    独家 | Scikit-LLM:Sklearn邂逅大语言模型

    标签:LLM Scikit-LLM是文本分析的游戏规则改变者,它将功能强大的ChatGPT语言模型和scikit-learn相结合,为理解和分析文本提供了一个无与伦比的工具包。...它汇集了语言模型和scikit-learn的优势,能够从文本中提取有价值的见解。...安装Scikit-LLM 从安装Scikit-LLM开始,它集成了scikit-learn和语言模型功能强大的各种库,可以使用pip来安装它: pip install scikit-llm 获取OpenAI...API密钥 截至2023年5月,Scikit-LLM兼容一组特定的OpenAI模型,要求用户提供自己的OpenAI API密钥才能成功集成。...目前从事智能化翻译教学系统的运营和维护,在人工智能深度学习和自然语言处理(NLP)方面积累有一定的经验。

    43530

    【Scikit-Learn 中文文档】使用 scikit-learn 介绍机器学习 | ApacheCN

    使用 scikit-learn 介绍机器学习 | ApacheCN 内容提要 在本节中,我们介绍一些在使用 scikit-learn 过程中用到的 机器学习 词汇,并且给出一些例子阐释它们。...我们可以将学习问题分为几大类: 监督学习 , 其中数据带有一个附加属性,即我们想要预测的结果值( 点击此处 转到 scikit-learn 监督学习页面)。...我们需要它适应模型,也就是说,要它从模型中*学习*。 这是通过将我们的训练集传递给 fit 方法来完成的。作为一个训练集,让我们使用数据集中除最后一张以外的所有图像。...模型持久化 可以通过使用 Python 的内置持久化模块(即 pickle )将模型保存: >>> >>> from sklearn import svm >>> from sklearn import...有关使用 scikit-learn 的模型持久化的更多详细信息,请参阅 模型持久化 部分。 规定 scikit-learn 估计器遵循某些规则,使其行为更可预测。

    1.3K90

    使用scikit-learn进行机器学习

    scikit-learn提供最先进的机器学习算法。 但是,这些算法不能直接用于原始数据。 原始数据需要事先进行预处理。 因此,除了机器学习算法之外,scikit-learn还提供了一套预处理方法。...在机器学习中,我们应该通过在不同的数据集上进行训练和测试来评估我们的模型。train_test_split是一个用于将数据拆分为两个独立数据集的效用函数。...y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) 一旦我们拥有独立的培训和测试集,我们就可以使用fit方法学习机器学习模型...# %load solutions/02_solutions.py 3.当更多优于更少时:交叉验证而不是单独拆分 分割数据对于评估统计模型性能是必要的。 但是,它减少了可用于学习模型的样本数量。...6.异构数据:当您使用数字以外的数据时 到目前为止,我们使用scikit-learn来训练使用数值数据的模型。

    2K21

    Python机器学习:Scikit-Learn教程

    一个易于理解的scikit-learn教程,可以帮助您开始使用Python机器学习。 使用Python进行机器学习 机器学习是计算机科学的一个分支,研究可以学习的算法设计。...今天的scikit-learn教程将向您介绍Python机器学习的基础知识: 您将学习如何使用Python及其库在主要组件分析(PCA)的帮助下探索数据matplotlib, 并且您将通过规范化预处理数据...顺便说一句,那里不只有一个scikit。此scikit包含专门用于机器学习和数据挖掘的模块,它解释了库名称的第二个组件。:) 要加载数据,请datasets从中导入模块sklearn。...这就是为什么这scikit-learn台机器学习地图会派上用场的原因。 请注意,此映射确实需要您了解scikit-learn库中包含的算法。...直到现在才进行实际的模型或学习。 现在,终于找到训练集的那些集群了。使用KMeans()从cluster模块设置你的模型。

    2.2K61
    领券