首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

根据需要建立QTableView剂量视图的模型

,可以使用Qt框架提供的QAbstractTableModel类来实现。QAbstractTableModel是Qt中的一个抽象基类,用于实现自定义的表格数据模型。

QAbstractTableModel类提供了一些纯虚函数,需要在子类中进行实现,以便提供数据的访问和修改接口。以下是一些常用的纯虚函数:

  1. rowCount(const QModelIndex &parent = QModelIndex()):返回表格的行数。
  2. columnCount(const QModelIndex &parent = QModelIndex()):返回表格的列数。
  3. data(const QModelIndex &index, int role = Qt::DisplayRole):返回指定索引位置的数据。role参数用于指定数据的角色,如显示文本、字体、颜色等。
  4. setData(const QModelIndex &index, const QVariant &value, int role = Qt::EditRole):设置指定索引位置的数据。value参数为要设置的数据,role参数为数据的角色。
  5. headerData(int section, Qt::Orientation orientation, int role = Qt::DisplayRole):返回表头数据。section参数为行或列的索引,orientation参数为方向,role参数为数据的角色。

在实现QAbstractTableModel子类时,可以根据需要重写这些函数,以提供具体的数据和功能。例如,可以使用一个二维列表或其他数据结构来存储表格数据,并在相应的函数中进行读写操作。

对于剂量视图的模型,可以将每一行表示一个剂量数据,每一列表示不同的属性,如剂量值、时间、位置等。可以根据实际需求定义表格的列数和每一列的数据类型。

在Qt中,可以使用QTableView类来显示和编辑表格数据。可以将QAbstractTableModel子类的实例设置为QTableView的模型,从而实现剂量视图的展示和交互功能。

腾讯云提供了云计算相关的产品和服务,如云服务器、云数据库、云存储等。具体可以参考腾讯云官方文档:腾讯云产品与服务

以上是根据提供的问答内容给出的完善且全面的答案,希望能对您有所帮助。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【Mol Cell】分子和细胞生物学中的冷冻电子显微镜(Cryo-EM)(二)

    一旦建立了良好的样本条件,高分辨率数据收集通常在强大的半自动系统上完成。目前,这个领域的市场主要由ThermoFisher Krios主导,其具有300 keV场发射电子枪电子源,平行和相干照明,自动样本处理,高机械和电磁稳定性,能量过滤器用于从图像中移除非弹性散射电子(对于更厚的样本和断层图非常重要),以及用于自动数据收集的先进软件和探测器。JEOL cryoARM提供了基本相同的功能和数据质量,两家公司也提供200 keV的半自动系统。高电压、高分辨率的自动化显微镜购买和运行的成本极高,目前它们需要熟练的操作员为每次数据收集会议进行设置。随着方法的改进和流程化,这些系统越来越像同步加速器束线那样作为中心设施运行。专门的员工操作显微镜,科学审查选中的用户带来或寄来他们的样本进行预定的会议。英国国家电子显微镜设施在钻石光源同步加速器建立,利用了现有的用户程序、同行评审、运行、数据处理和维护的基础设施(Clare等人,2017)。其他几个国家和国际组织已经效仿这个例子。

    02

    Nat. Mach. Intell. | 基于PK/PD建模的深度学习从早期数据预测患者的反应时间过程

    今天给大家介绍的文章来自美国基因泰克公司“Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/pharmacodynamic modelling”,基于神经药代动力学/药效学建模的深度学习从早期数据预测患者的反应时间过程。目前,使用药代动力学或药效学 (PK/PD)方法对给药后的患者反应时间进行纵向分析,仍需要大量的人类经验和相关的专业知识。本文提出了一种新的PK/PD神经网络框架,将药理学原理与常微分方程(ODE)相结合,可以模拟患者对未经测试的给药方案的反应。分析了600多名患者组成的临床数据集的药物浓度和血小板反应,实验证明了该模型自动预测分析患者的反应时间过程的潜力。

    01

    LDCTIQAC2023——低剂量计算机断层扫描图像质量评估

    图像质量评估 (IQA) 在计算机断层扫描 (CT) 成像中极为重要,因为它有助于 辐射剂量的优化和医学成像中新算法的开发,例如 恢复。此外,由于过量的辐射会对患者造成有害影响,因此从低剂量图像生成高质量图像是医学领域的热门话题。然而,尽管峰值信噪比 (PSNR) 和结构相似性指数度量 (SSIM) 是 这些算法使用最广泛的评估指标,但它们与放射科医生对图像质量的看法的相关性已被证明是 在以前的研究中不足,因为他们根据数字像素值计算图像分数。此外 ,由于需要原始参考图像来计算这些指标 ,因此它们在实际临床环境中无效,由于辐射剂量会给患者带来风险,因此通常不可能获得原始、高质量的图像。为了克服这些限制,一些研究旨在开发一种 无参考的新颖图像质量指标,该指标与放射科医生对没有 任何参考图像的图像质量的看法密切相关 。

    03

    Ebiomedicine | 通过稀疏可解释网络发现药物作用机制

    今天为大家介绍的是来自Angel Rubio团队的一篇论文。尽管深度神经网络(DDNs)在预测癌症药物疗效方面取得了成功,但其决策过程缺乏可解释性仍然是一个重大挑战。先前的研究提出模仿基因本体结构,以便解释网络中的每个神经元。然而,这些先前的方法需要大量的GPU资源,并且阻碍了其向全基因组模型的扩展。作者开发了SparseGO,这是一种稀疏且可解释的神经网络,用于预测癌症细胞系中的药物反应及其作用机制(MoA)。为了确保模型的泛化性,作者在多个数据集上对其进行了训练,并使用三种交叉验证方案评估其性能。该模型的高效性使其能够使用基因表达数据。此外,SparseGO结合了可解释人工智能(XAI)技术DeepLIFT和支持向量机,以计算方式发现药物的作用机制。与其他方法相比,SparseGO的稀疏实现显著减少了GPU内存使用量和训练速度,使其能够处理基因表达数据而不是突变数据。使用基因表达数据的SparseGO提高了准确性,并使其可以用于药物重新定位。此外,基因表达数据可以使用265种药物进行训练来预测其作用机制。

    01
    领券