树莓派配置OpenCV,配置起来有点繁琐且耗时,但是调用百度智能云的人脸识别API来进行人脸识别是一个快速的解决方案
在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给Arduino的HC-05模块,让Arduino控制舵机开门。
前言: 本文内容是基于前一篇文章扩展而来: 4步实现树莓派人脸识别、拍照与推送、舵机旋转
作品未来设想:并不是制作一个能自由行走的智能管家机器人之类的,那样的科技以及成本是不一个寒假可以ko!我们希望创造出智能机器人的头。
前面发布了人脸识别门禁系统的系列视频教程,现在补上图文版,方便查看指令和代码,这篇文章也是对之前的文章的更新与完善。
Amazon locker是一款知名的产品,它植根于美国,可以通过人脸认证自动将包裹递送到正确的客户手中。
选自hackster 作者:MJRoBot 机器之心编译 本文介绍了如何在树莓派上,使用 OpenCV 和 Python 完成人脸检测项目。该项目不仅描述了识别人脸所需要的具体步骤,同时还提供了很多扩
这几年人脸识别技术在国内发展飞速,给生活带了很多便利,这个大家应该都有体会。早几年进高铁站还比较麻烦,要先排长队,得让检票口的工作人员一个一个查看证件然后“啪”地戳章,才能进站。很多人应该都和我一样想过一个问题,那为什么不多设几个口呢?我还专门问了朋友,朋友说都知道排长队体验不太好,不过多开一个口,就要多雇几个人,不但要一直开工资,还要有保险等各类配套的保障类支出,用人成本很高,所以二者只能相互取平衡。
人脸识别技术已经被广泛应用在众多场景中。今天我们将利用Docker容器在树莓派上快速打造一个人脸识别应用。
这个方式不用修改 rc.local 文件。机制上类似于 Windows 的“开始”菜单中的“启动”菜单。方法如下:
2019年国庆,帮朋友实现了一个人脸识别进行开锁的功能,用在他的真人实景游戏业务中。几个月来运行稳定,体验良好,借着这个春节宅家的时间,整理一下这个应用的实现过程。
作者:eckygao,腾讯 CSIG 云产品部 1.案例概述 1.1 背景 实现一个人脸识别进行开锁的功能,用在他的真人实景游戏业务中。总的来说,需求描述简单,但由于约束比较多,在架构与选型上需要花些心思。 1.2 部署效果 由于该游戏还在线上服务中,此处就不放出具体操作的视频了。 1.3 玩家体验 玩家发现并进入空间后,在显示屏看到自己在当前场景出镜的实时画面。 玩家靠近观察时,捕获当前帧进行人脸识别,实时画面中出现水印字幕“认证中” 人脸认证失败时,实时画面水印字幕变更为“认证失败”,字幕
实现一个人脸识别进行开锁的功能,用在他的真人实景游戏业务中。总的来说,需求描述简单,但由于约束比较多,在架构与选型上需要花些心思。
因为JetBot上用的是树莓派摄像头,所以我们也首选考虑使用树莓派摄像头,当然USB摄像头是亲测可用的。
使用Nvidia Jetson Nano,您可以用很少的预算构建运行gpu加速的深度学习模型的独立硬件系统。它有点像树莓派,但速度比树莓派快得多。
hello!大家好,本次作品名为AI早安机器人,是一款新型交互式打卡机,我们在实现人脸识别的基础上增加了打印机功能,同时实现云端对管理者手机进行手机的数据传输,让管理者实时知道员工的到位情况,同时模块化设计使得作品极具可塑性,可以简单修改应用于其他场景,如电影院的智能取票,会议室的人员到达情况。。
这是第二次给大家推荐Github项目,上次给大家介绍的是使用核心主义价值观作为编码的编译器:媒体人自保攻略,今天介绍在Github开源的人脸识别项目,目前已经获得2000+的star,以后推荐Github项目会成为一个保留项,自己遇到觉着不错的就跟大家推荐,希望跟大家共同进步。
目前,物联网、人工智能已经深入到医疗、家居、交通、教育和工业等多个领域,正在极大改变人们的日常生活。树莓派受众多物联网技术爱好者和创客的欢迎,除官方的 Raspbian 系统以外,还可以运行微软的 Windows 10 IoT Core 和 Google 的 Android Things 等面向物联网应用的操作系统。
树莓派4B一块Linux系统的嵌入式卡片电脑,raspberrypi 4B的内核为ARM,A72的版本,其树莓派的裸板上包涵4核的1.5GHZ的CPU,RAM内存为1G/2G/4G,以及USB3.0,蓝牙5.0
使用一个桌面型的六轴机械臂,在机械臂的末端安装一个摄像头,来进行人脸识别和跟踪的一个功能。该功能分为两个模块,一个是人脸识别模块,另一个是机械臂的运动控制模块。
在Windows使用此face_recognition项目时,由于官方不提供Windows版本:安装时总是遇到不同问题。
face_recognition 宣称是史上最强大,最简单的人脸识别项目。据悉,该项目由软件工程开发师和咨询师 Adam Geitgey 开发,其强大之处在于不仅基于业内领先的 C++ 开源库 dlib 中的深度学习模型,采用的人脸数据集也是由美国麻省大学安姆斯特分校制作的 Labeled Faces in the Wild,它含有从网络收集的 13,000 多张面部图像,准确率高达 99.38%。此外,项目还配备了完整的开发文档和应用案例,特别是兼容树莓派系统。简单之处在于操作者可以直接使用 Python和命令行工具提取、识别、操作人脸。
之前的人脸识别考勤系统,已经依靠face++和opencv基本完成了功能初步测试。最后调试下的情况是:
https://gitee.com/itcode-itcode/Python.git
清单 硬件部分 Raspberry Pi 2 Model B PIR运动传感器(通用) Microsoft LifeCam 3000 HD摄像头 伺服马达FS5103R 5V电源 电阻器 1k欧姆 软件应用程序及在线服务 Microsoft Windows 10 IoT Core Microsoft Visual Studio 2015 Microsoft Project Oxford Microsoft Azure Microsoft Azure云存储服务 动手实践 关于项目: 该设备使用Microsof
最初拿到树莓派的时候测试过,没成功,后来发现一张华丽丽的说明图,顿时醒悟了..记录下来,
一、功能特点 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。 在线版的协议支持百度、旷视,离线版的支持百度,可定制。 除了支持X86架构,还支持嵌入式linux比如contex-A9、树莓派等。 每个功能的执行除了返回结果还返回执行用时时间。 多线程处理,通过type控制当前处理类型。 支持单张图片检索相似度最高的图片。 支持指定目录图片用来生成人脸特征值文件。 可设置等待处理图片队列中的数量。 每次执行都有成功或者失败的信号返回。 人脸搜索的返
如果要问当下互联网什么最热门?毫无疑问是人工智能。目前,世界上主要发达国家都已经将人工智能作为国家级发展战略。那么,踩在下一个时代的风口浪尖上,普通程序员如何向人工智能靠拢?为此特别推荐10款托管在码云上的人工智能开源软件,希望能够给大家带来一点点帮助和启发。 当然,如果你很喜欢以下提到的项目,别忘了分享给其他人。 1、项目名称:智能家居的架构 项目简介: 智能家居的概念(smart home , home auto)很早以前就有了,现在随着硬件成本的下降,及 google 收购 nest 等,智能家居热度
-欢迎 原文该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员。有了世界上最简单的人脸识别库,使用 Python 或命令行,即可识别和控制人脸。该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。这也提供了一个简单的 face_recognition 命令行工具,你可以打开命令行中任意图像文件夹,进行人脸识别! 1.找出下面图
大部分童鞋的树莓派是不是一直在吃灰呢?一直闲置着,倒不如用它做一个简易监控,如果检测到人脸后,就拍照上传到指定地方,或发消息提醒。
warning: 这篇文章距离上次修改已过552天,其中的内容可能已经有所变动。
首先我们先看一段预览视频,了解一下无人超市的整个销售与运作过程。 视频内容 无人超市,未来趋势。 上面这段视频,展示了逛亚马逊的Amazon Go无人超市是种怎样的体验。毫无疑问,一个完善的无人超市需要复杂的技术支撑。 现在,挑战来了。 你能不能在一天半的时间里,从零着手搭建出一个基本的Amazon Go无人超市系统?让客户可以体验无缝衔接的购物体验? 当然可以。 有个四人小组就在最新的一次黑客马拉松中,完成了这样一次挑战。他们只用了不到36个小时,就搞定了一切,而且还把整个教程公布了出来。 首先,得有一套
夏乙 问耕 编译整理 量子位 出品 | 公众号 QbitAI 无人超市,未来趋势。 上面这段视频,展示了逛亚马逊的Amazon Go无人超市是种怎样的体验。毫无疑问,一个完善的无人超市需要复杂的技术支撑。 现在,挑战来了。 你能不能在一天半的时间里,从零着手搭建出一个基本的Amazon Go无人超市系统?让客户可以体验无缝衔接的购物体验? 当然可以。 有个四人小组就在最新的一次黑客马拉松中,完成了这样一次挑战。他们只用了不到36个小时,就搞定了一切,而且还把整个教程公布了出来。 首先,得有一套文档,列出全部
预计在不久后的将来,人脸识别和身份认证技术将在我们的日常生活中扮演一个非常重要的角色。这项技术为我们开辟了一个全新的世界,它几乎适用于我们生活的方方面面。面部识别/身份认证的使用案例包括安全系统、认证系统、个性化智能家居和家庭护理助理等。
前几天,在食堂吃饭,本来每天中午的新闻三十分换成了视频监控。我们已经习惯了,前十分钟看着领导都很忙,中间十分钟中国人民都很幸福,后十分钟别的国家都生活在水深火热里,顺便跟同事谈谈国家大事。突然主角换成了我们自己,便毫无抬头的欲望。
记录一下 可行的树莓派 3B+ python3.5+opencv3.4.1下载安装及配置
之前实践了下face++在线人脸识别版本,这回做一下离线版本。github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现。
博主手里有一块正点原子 STM32F103 单片机开发板,一块基于三星 S3C2440 的 JZ2440 开发板,一块 NXP 的 IMX6ULL 开发板,缺一块高性能开发板,所以去找了一下,发现 RK3288、RK3399、RK3399pro 不错,然后发现 RK 是国产,于是去了解了一下。
前段时间收到了搭载安谋科技STAR-MC1的聆思CSK6 AI开发套件,今天和我一起体验一下如何在这个套件上部署一个手势识别应用。正式开始前先简单看一下这套开发套件什么样子。
本项目搭建的表情识别系统,是包含了多门学科知识的深度学习应用。在实际生活中,表情识别在人机交互、安全、机器人制造、无人驾驶和医疗都有着一定的作用。本项目实践的是基于嵌入式系统的表情识别系统的设计方法,将图像采集、人脸检测、表情识别和结果输出整合到树莓派中。
Face Recognition软件包 这是世界上最简单的人脸识别库了。你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸。 该软件包使用dlib中最先进的人脸识别深度学习算法,使得
Face Recognition软件包 这是世界上最简单的人脸识别库了。你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸。 该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了99.38%。 它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。 特性 在图片中识别人脸 找到图片中所有的人脸 找到并操作图片中的脸部特征 获得图片中人
在这篇文章中,你将学会如何使用OpenCV、Python和深度学习在图像和视频流中执行人脸识别。我们今天将在这里使用的基于深度学习的面部嵌入,既高度准确又能够实时执行。
最近有个科研课题需要在树莓派上做一系列验证,但是实验的程序是依赖OpenCV库的(最重要我们修改了库源码),而在树莓派上编译OpenCV源码很费时间,因此我只好使用交叉编译的方法来编译源程序。刚开始我们觉着网上材料大片,这部分的问题应该不大。可到操刀干活的时候,我才发现网上很多方法不仅繁琐,而且有的甚至还不是那么一回事,没看到一篇完全适合我的情况的。于是,我花了一天半左右的时间,整理这些材料并结合一点TRIZ原理,完成了这项任务。现在分享一下我的方案总结,不过我的方案不尽完善,欢迎大家指点修正,帮助后人节省时间。
"创客运动”(maker movement)在一定程度上是由Raspberry Pi等低成本电脑促成的,它推动了嵌入式开发者社区的快速增长,并为数千万人带来了更高的技术能力。如今成千上万的创客项目可能受益于人工智能,从智能家具、人脸识别到宠物监控、智能小家电等。
照片、视频中的人脸有时也能骗过一些不成熟的人脸识别系统,让人们对人脸解锁的安全性产生很大怀疑。在这篇 4 千多字的教程中,作者介绍了如何用 OpenCV 进行活体检测(liveness detection)。跟随作者给出的代码和讲解,你可以在人脸识别系统中创建一个活体检测器,用于检测伪造人脸并执行反人脸欺骗。
领取专属 10元无门槛券
手把手带您无忧上云