公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。...两年前,作者创建了tsai深度学习库,以便于使用最先进的深度学习模型和方法对时间序列数据进行建模与预测。 当上次Kaggle时间序列比赛结束时,我很想知道顶级队伍是如何取得如此优异的成绩的。...中值只有在有很多值的时候才准确。 所有Top团队都创建了一个或多个强大的模型,并运行: 多重折叠(10到15 folds) 或使用不同种子的所有训练数据 或者两者的结合后处理。...结论 时间序列领域与计算机视觉和NLP的一样,神经网络逐渐的占据了主导地位。 神经网络加上领域专家知识可以显著提高时间序列任务的性能。近年来,深度学习在时间序列中的应用发展迅速。...它已经成熟,所以现在是开始使用它来解决时间序列问题的好时机。
之前专门花了两篇推文来分别介绍两种常用时间序列模型:ETS(指数平滑法)和ARIMA(整合差分移动平均自回归法)的基本原理。本文就进入Power BI的用法篇。...在首次使用上述视觉对象的时候,Power BI会提示下载所需的包(Libraries),用户根据提示一步一步点击即可,无需手动在R上另外安装。...Forecasting TBATS TBATS是季节性ARIMA模型的变体。基本原理跟ARIMA模型相似。这四个预测型视觉对象都只能拖入两个字段:时间字段和序列数值字段。...该视觉对象提供了相对较多的可以设置的功能。...可以设置p,d,q和含季节性的P,D,Q参数。也可以开放数据导出的功能。 总结 时间序列预测本身是个复杂而又难以保证效果的工作。
在自己的项目中,发现对象在序列化后,日期格式出现了问题。 先看问题 在员工表中有一列是生日,字段类型为Date,也就是只存储到年月日,不带小时分秒,见下图数据库中的数据 ?...问题就出现在了 spring 的 message-converters 上,在我的项目中,配置的类型转换器为 google的 gson。...所以当请求返回给浏览器的时候,spring会利用Gson将对象序列化输出到前端,按照配置的规则,就会带有小时分秒了。具体见下面的代码: <!...两种办法: 1、修改全局设置,将上述的配置修改yyyy-MM-dd。这样做有一个弊端:所有的日期处理都会受到影响。 2、利用@JsonAdapter注解,在想要特殊处理的属性上,添加该注解。...具体如下: write是序列化、read是反序列化 package com.wt.common.core.adapter; import com.google.gson.JsonSyntaxException
TsFile 是一种为时间序列数据设计的列存储文件格式,具有先进的压缩技术以最小化存储空间,高吞吐量的读写能力,并与 Apache 项目 Spark 和 Flink 等处理和分析工具深度集成。...它于 2020 年成为 Apache 软件基金会的顶级项目。 “在 TsFile 出现之前,时间序列数据缺乏标准文件格式,导致数据收集和处理复杂化。”...TsFile 可以存储来自单个设备或多个设备的时间序列。虽然来自多个设备的数据存储在 TsFile 中,但每个设备都有独立的存储引擎,因此在物理上与传统数据库中一样是隔离的。...使用更少的云资源 物联网原生数据模型将设备和传感器的时间序列数据组织成适应延迟数据到达的日志结构合并树,适用于写入密集型工作负载。...“过去,公司通常会以各种用户定义的文件格式编写时间序列数据,缺乏统一性,或者使用通用的列式文件格式,如 [Apache 项目] Parquet 和 ORC,这使得没有标准的数据收集和处理变得复杂。”
来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用 ggfortify 来对时间序列进行快速可视化的方法。...PCA (主成分分析) ggfortify 使 ggplot2 知道怎么诠释PCA对象。...加载好 ggfortify 包之后, 你可以对stats::prcomp 和 stats::princomp 对象使用 ggplot2::autoplot。...用 ggfortify 可以使时间序列的可视化变得极其简单。...autoplot(Canada, facets = FALSE) autoplot 也可以理解其他的时间序列类别。
来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用 ggfortify 来对时间序列进行快速可视化的方法。...时间序列的可视化 用 ggfortify 可以使时间序列的可视化变得极其简单。接下来我将给出一些简单的例子。...autoplot 也可以理解其他的时间序列类别。...更多关于时间序列的例子,请参考 Rpubs 上的介绍。...最近又多了许多额外的非常好用的功能,比如说现在已经支持 multiplot 同时画多个不同对象,强烈推荐参考 Rpubs 以及关注我们 Github 上的更新。 祝大家使用愉快!
本文将介绍如何通过python来读取、展现时间序列数据。...读取 时间序列数据一般用cvs等电子表格的形式存储,这里以cvs为例: from dateutil.parser import parse from datetime import datetime...index_col='Month', # 指定索引列 parse_dates=['Month'], # 将指定列按照日期格式来解析...date_parser=date_parse) # 日期格式解析器 ser .head() 可视化 import...本篇介绍了时间序列的一般数据格式和基于python的可视化方法,下一篇将介绍时间序列的分解方法,目的是通过分解出的时间序列的各个成分来进一步的了解时间序列。
:基于时间序列对象(ts) ggfortify 包中的 autoplot() 可以对时间序列直接绘图。...:时间跨度为 1 年 6.3 多个时间序列 在本例中,基于长数据格式进行可视化。...如果从一个宽格式创建一个时间序列,则必须通过对每条线调用一次 geom_line() 。...这更适用于时间点很少的时间序列。下面给出使用 ggplot2 包绘制的案例,来源于:Top 50 ggplot2 Visualizations[5]。...类型的时间序列对象,您可以通过使用 forecast::ggseasonplot() 绘制的季节图来查看季节波动。
broom:用于将统计模型的结果整理成数据框形式 zoo:定义了一个名zoo的S3类型对象,用于描述规则的和不规则的有序的时间序列数据。...ggvis:交互式图表多功能系统 htmlwidgets:一个专为R语言打造的可视化JS库 leaflet:绘制交互式地图 dygraphs:绘制交互式时间序列图 plotly:交互式绘图包,...tibble:高效的显示表格数据的结构 stringr:一个字符串处理工具集 lubridate:用于处理日期时间数据 xts:xts是对时间序列数据(zoo)的一种扩展实现,提供了时间序列的操作接口...R包,其中的一些R包适用于多个主题。...详见统计之都文章 R6:R6是R语言的一个面向对象的R包,可以更加高效的构建面向对象系统。
以下是我推荐的一些R语言时间序列分析的最佳实践:准备数据:确保数据按照时间顺序进行排序。检查并处理数据中的缺失值和异常值。...确定时间间隔(例如每日、每周、每月)并将数据转换为适当的时间序列对象(如xts或ts)。可视化数据:使用绘图工具(如ggplot2包)绘制时间序列的趋势图,以便直观地了解数据的整体情况。...拟合时间序列模型:根据数据的特征选择适当的时间序列模型,如ARIMA、GARCH等。使用模型拟合函数(如arima、auto.arima)对数据进行拟合,并估计模型的参数。...模型诊断:使用模型诊断工具(如AIC、BIC、残差分析等)对拟合的时间序列模型进行评估。检查残差序列是否为白噪声,并对其进行必要的修正。...比较不同模型的性能,选择表现最好的模型作为最终模型。预测未来值:使用拟合好的时间序列模型对未来值进行预测。绘制预测结果的图表,并根据需要调整或改进模型。
broom:用于将统计模型的结果整理成数据框形式 zoo:定义了一个名zoo的S3类型对象,用于描述规则的和不规则的有序的时间序列数据。...数据可视化 以下R包用于数据可视化: ggplot2及其扩展:ggplot2包提供了一个强大的绘图系统,并实现了以下扩展 ggthemes:提供扩展的图形风格主题 ggmap:提供Google Maps...tibble:高效的显示表格数据的结构 stringr:一个字符串处理工具集 lubridate:用于处理日期时间数据 xts:xts是对时间序列数据(zoo)的一种扩展实现,提供了时间序列的操作接口。...R包,其中的一些R包适用于多个主题。...详见统计之都文章 R6:R6是R语言的一个面向对象的R包,可以更加高效的构建面向对象系统。
p=25180 时间序列分析 对于时间序列分析,有两种数据格式: ts (时间序列)和 xts (可扩展时间序列)。前者不需要时间戳,可以直接从向量转换。...price 我们首先为估计定义一个时间序列(ts)对象。请注意, ts 与 xts类似, 但没有日期和时间。...df <- ts(df) df 可扩展的时间序列数据xts 要处理高频数据(分秒),我们需要包 xts。该包定义可扩展时间序列 ( xts ) 对象。 以下代码安装并加载 xts 包。...library(xts) 考虑我们的可扩展时间序列的以下数据 date time price 现在我们准备定义 xts 对象。...代码 as.POSIXct() 将字符串转换为带有分钟和秒的日期格式。
执行时间序列分析?尝试一下像zoo,xts和quantmod程序包。 课后作业 通过“导入数据进入R语言”课程,或阅读文章1、2、3、4。掌握导入数据软件包。...看Rattle中的一些R语言数据挖掘书。 可以从这本小册子上学习时间序列——A Little Book for Time Series in R ....步骤八:时间序列分析 R语言有一个用于专属任务视图时间序列。如果你想在R语言中做一些时间序列分析,这将是您开始的地方。您很快会发现工具的强大。 想要从在线资源中掌握时间序列分析是件不容易的事情。...好的切入点是一本关于时间序列的书或者选择《原理与实践》这本书。在程序包方面,您需要熟悉Zoo与xts程序包。Zoo为您提供了常用的保存时间序列对象格式,而xts供了操作时间序列的数据集工具。...辅助资源: 时间序列综合教程。 课后作业 选择上述列出的时间系列教程,开始您的分析。 使用quantmod或quandl程序软件包下载财务数据,开始您的时间序列分析。
p=13971 R语言提供了丰富的功能,可用于绘制R中的时间序列数据。 包括: 自动绘制 xts 时间序列对象(或任何可转换为xts的对象)的图。...演示版 这是一个由多个时间序列对象创建的简单折线图: lungDeaths <- cbind(mdeaths, fdeaths) graph(lungDeaths) ?...请此图是完全交互式的:当鼠标移到系列上时,将显示各个值。还可以选择要放大的图形区域(双击缩小)。 可以通过将其他命令通过管道传递到原始图表对象上来自定义图表。...提供了许多用于定制系列和轴显示的选项。可以将多个下/值/上样式系列组合到带有阴影条的单个显示中。...这是一个时间序列分析之指数平滑法示例,它说明了阴影条,指定图标题,在x轴上绘制网格以及为系列颜色使用自定义调色板的示例: graph(predicted, main = "Predicted Lung
p=13971 R语言提供了丰富的功能,可用于绘制R中的时间序列数据。 包括: 自动绘制 xts 时间序列对象(或任何可转换为xts的对象)的图。...演示版 这是一个由多个时间序列对象创建的简单折线图: lungDeaths <- cbind(mdeaths, fdeaths)graph(lungDeaths) 请此图是完全交互式的:当鼠标移到系列上时...还可以选择要放大的图形区域(双击缩小)。 可以通过将其他命令通过管道传递到原始图表对象上来自定义图表。...可以将多个下/值/上样式系列组合到带有阴影条的单个显示中。...这是一个时间序列分析之指数平滑法示例,它说明了阴影条,指定图标题,在x轴上绘制网格以及为系列颜色使用自定义调色板的示例: graph(predicted, main = "Predicted Lung
原理 利用API读取的方式,我们需要设定一个读取序列和对应的配置,获取行情函数getSymbols类似于原生的assign和get函数,用函数的方式将变量名传入后完成变量的赋值。...原理 分析底层数据结构后,我们知道quantmod包读取后的数据格式是 xts 和 zoo,我们只需要将csv文件按一定的格式读取到内存后再进行相应变换,quantmod强大的分析和作图能力就可以为我们所用...zoo本身是一种时间序列格式,而xts则是在这基础上一种时间序列格式的加强版。在读取csv的时候,我们需要用首行确定header。在转化为zoo时,我们则需要首列来确定时间序列对应的时间。...最后通过xts转化为可以被quantmod识别的xts时间序列对象。...'# 读取CSV并转化时间格式csv <- read.csv(filePath,header=TRUE,sep=",") csv$LZ_GPA_QUOTE_TCLOSE <- as.POSIXct(as.character
x, as.Date(charvec)) #包xts timeSeries(x,as.Date(charvec)) #包timeSeries #规则的时间序列,数据在规定的时间间隔内出现 tm = ts...(tm) #包xts sm = as.timeSeries(tm) #包timeSeries #判断是否为规则时间序列 is.regular(x) #排序 zoo()和xts()会强制变换为正序(按照时间名称...#时间序列数据的显示 #zoo和xts都只能按照原来的格式显示,timeSeries可以设置显示格式 print(x, format= “%m/%d/%y %H:%M”) #%m表示月,%d表示天,%y...=”quarter”) 图形展示 plot.zoo(x) plot.xts(x) plot.zoo(x, plot.type=”single”) #支持多个时间序列数据在一个图中展示 plot(x, plot.type...=”single”) #支持多个时间序列数据在一个图中展示,仅对xts不行 基本统计运算 1、自相关系数、偏自相关系数等 例题2.1 d=scan(“sha.csv”) sha=ts(d,start=1964
J. van den Burg 内容提要 变化点检测是时间序列分析的重要组成部分,变化点的存在表明数据生成过程中发生了突然而显著的变化。...虽然存在许多改变点检测的算法,但是很少有研究者注意评估他们在现实世界时间序列的性能。算法通常是根据模拟数据和少量不可靠的常用序列的ground truth进行评估的。...为了实现这一点,我们提出了第一个专门设计用于评估变化点检测算法的数据集,包括来自不同领域的37个时间序列。...每个时间序列都由5名专业的注释员进行标注,以提供关于变化点的存在和位置的ground truth。...我们分析了人类标注的一致性,并描述了在存在多个ground truth标注的情况下,可以用来衡量算法性能的评价指标。随后,我们提出了一项基准研究,在数据集中的每个时间序列上评估了14种现有算法。
领取专属 10元无门槛券
手把手带您无忧上云