首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

来自pinescript中较低时间段的准确数据

是指在pinescript编程语言中,通过使用较低时间段的数据来获取更准确的数据。Pinescript是一种专门用于编写交易策略和指标的编程语言,常用于TradingView平台上的技术分析。

较低时间段的数据是指较短的时间间隔内的市场数据,例如分钟级别或小时级别的数据。相比较较高时间段的数据(如日线或周线),较低时间段的数据更加细粒度,可以提供更详细的市场行情信息。

准确的数据对于技术分析和交易决策非常重要。通过使用较低时间段的数据,可以更好地捕捉市场的短期波动和趋势,从而提高交易策略的准确性和效果。

在使用pinescript编写交易策略时,可以通过以下方式获取较低时间段的准确数据:

  1. 使用内置函数:pinescript提供了一些内置函数来获取较低时间段的数据,例如security()函数可以获取较低时间段的数据,并将其用于当前时间段的计算。
  2. 自定义函数:根据具体需求,可以编写自定义函数来获取较低时间段的数据。例如,可以编写一个函数来计算较低时间段的移动平均线或其他指标。

应用场景:

  • 短期交易策略:较低时间段的准确数据可以用于开发短期交易策略,捕捉市场的短期波动和趋势。
  • 高频交易:对于高频交易策略,较低时间段的数据非常重要,可以提供更精确的市场行情信息。
  • 实时监控:通过获取较低时间段的数据,可以实时监控市场的变化,并及时做出相应的决策。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云云服务器(CVM):提供弹性计算能力,满足各类业务需求。产品介绍链接
  • 腾讯云云数据库MySQL版:提供高性能、可扩展的MySQL数据库服务。产品介绍链接
  • 腾讯云人工智能:提供丰富的人工智能服务和解决方案,包括图像识别、语音识别、自然语言处理等。产品介绍链接
  • 腾讯云物联网平台:提供全面的物联网解决方案,帮助用户快速构建物联网应用。产品介绍链接
  • 腾讯云移动开发:提供移动应用开发的云端支持,包括移动后端服务、移动推送等。产品介绍链接
  • 腾讯云对象存储(COS):提供安全、稳定、低成本的云端存储服务。产品介绍链接
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告

摘要:此报告首先将dataset进行数据清洗,得到dataset_new。再将dataset_new中属性分为基本信息、贷款行为/意愿信息和征信信息三类,并逐一进行分析。在对基本信息的分析中得出,在贷款未结清者中,青年群体、中等教育程度群体、中等和高收入群体的频数较高,同时已婚、受薪雇员占比高于未婚、个体经营者。在对贷款意愿与行为的信息分析中得出,贷款意愿与行为的变化与是否能够在规定时间内结清贷款相关性较低。在对征信信息的分析中可以得出,征信信息中的正指标与负指标与是否能按期结清贷款有较为显著的正相关与负相关关系。最后再利用机器学习算法训练预测是否能够按期结清贷款的模型,测试结果准确度较高。

00
  • GLanCE30 v001全球土地分类数据集,分辨率 30 m

    NASA 制作用于研究环境的地球系统数据记录 (MEaSURE) 全球土地覆盖绘图和估算 (GLanCE)每年30米(m)版本1数据产品提供来自Landsat 5专题制图器(TM)、Landsat 7增强型专题制图器Plus( ETM+)和 Landsat 8 运行陆地成像仪 (OLI)。这些地图为用户社区提供土地覆盖类型、土地覆盖变化、表征每个像素绿化程度和季节性的指标以及变化幅度。 GLanCE 数据产品将使用一组七个大陆网格提供,这些网格使用参数化的兰伯特方位角等面积投影,以最大限度地减少每个大陆的失真。目前,北美和欧洲大陆均可用。该数据集可用于广泛的应用,包括生态系统、气候和水文建模;监测陆地生态系统对气候变化的反应;碳核算;和土地管理。

    01

    BMC Medicine:自闭症谱系障碍静息态EEG信号的定量递归分析​

    自闭症谱系障碍(ASD,Autism spectrum disorder )是一种神经发育障碍,患病率为1-2%。特别是在低资源环境中,对ASD的早期识别和诊断是一个重大挑战。因此,ASD迫切需要一种“语言自由、文化公平”,并且不需要专业人员参与的低成本筛选工具。在ASD和神经发育障碍中,EEG可用来寻找生物标记物。其中,关键挑战之一是确定适当的多元下一代分析方法(multivariate, next-generation analytical methodologies),这些方法可以描述大脑中复杂的非线性神经网络动态性,同时也考虑到可能影响生物标记物发现的技术和人口学混淆因素。开普敦大学儿童和青少年精神病科T. Heunis和P. J. de Vries等人在BMC Medicine杂志发文,评估定量递归分析(RQA,recurrence quantification analysis )作为ASD潜在生物标记物的稳健性,并对一系列潜在的技术和人口混杂因素进行系统的方法学探索。

    02

    PNAS | ChatGPT在文本标注任务中表现优于众包工作者

    今天为大家介绍的是来自Fabrizio Gilardi的一篇讨论chatgpt能力的论文。许多自然语言处理(NLP)应用需要进行手动文本标注,用于训练分类器或评估无监督模型的性能,这是一个常见的任务。根据任务的规模和复杂程度,这些任务可能由众包工作者在MTurk等平台上进行,也可能由经过培训的标注员,比如研究助理,来完成。作者使用包含六千一百八十三个样本的四个推文和新闻文章数据集,展示了ChatGPT在多个标注任务中的表现优于众包工作者。在这四个数据集上,ChatGPT的零样本准确率平均超过众包工作者约25个百分点,同时ChatGPT的标注员间一致性在所有任务上均超过众包工作者和经过培训的标注员。此外,ChatGPT每个标注的成本不到0.003美元,比MTurk便宜约30倍。这些结果表明大型语言模型的潜力,能够大幅提高文本分类的效率。

    02

    把脉城市功能 | 基于LBS大数据量化城市尺度动态功能

    城市尺度动态功能的准确识别可以为区域协调发展和城市体系规划提供更多更加精准有效的服务。在过去几十年里,已经有大量关于中国城市功能划分的研究,研究人员根据城市的多源属性或者主要属性之一对城市进行划分。例如余建辉等人将262个中国的资源型城市分为四类:成长型,成熟型,衰落型和再生型城市。然而以往的研究主要基于统计数据集,问卷调查结果和其他相关数据来定性或定量的定义城市的功能,但是,最新的统计数据并不总是容易获得。而且实际上,城市功能是动态变化的,这可能无法从明显滞后的统计数据中准确推断出来。

    03

    探索MEG脑指纹:评估、陷阱和解释

    基于受试者的功能性连接组(FC)的个体特征(即“FC指纹”)已经成为当代神经科学研究的一个非常热门的目标,但脑磁图(MEG)数据中的FC指纹还没有得到广泛的研究。本研究中,我们研究来自人类连接组计划(HCP)的静息状态的MEG数据,以评估脑磁图FC指纹及其与包括振幅和相位耦合的功能连接指标、空间渗漏校正、频带和行为意义在内的几个因素的关系。为此,我们首先使用两种识别评分方法,区分识别率和成功率,为每个FC测量提供定量指纹评分。其次,我们探索了横跨不同频段(δ、θ、α、β和γ)的边缘和节点的MEG指纹模式。最后,我们研究了从同一受试者的MEG和fMRI记录中获得的跨模态指纹模式。我们的结果表明,指纹识别的性能在很大程度上取决于功能连接指标、频带、识别评分方法和空间渗漏校正。本研究初步提供了MEG指纹与不同方法学和电生理因素相关的第一个特征,并有助于理解指纹的跨模态关系。

    00

    共享单车的分配与调度

    共享单车的分配与调度 摘要 随着共享经济的到来,共享单车发展迅速,已成为人们出行的重要交通工具。在共享单车迅速发展的同时也存在着资源配置的不合理性,本文通过研究共享单车的分配与调度模型,解决如何衡量在不同时空共享单车资源的需求量;如何分配不同地区共享单车,使共享单车数量趋于合理;设计优化资源配置的调度方案;以及作为共享单车公司负责人,设计一套运营方案这四个问题。针对以上问题解决如下: 针对问题一:建立合理指标分析不同时空共享单车资源的需求量。收集相关数据并分析,以10个区域为例,分别选取不同区域总需求量、不同时间段各区域实际骑行数量、不同区域不同时间段实际骑行数量等合理指标,分析不同时间和空间上共享单车资源的需求量。结果为短距离骑行人数较多,需求更大;区域6和区域8需要骑行的总人数较多;所有区域7:30-8:00、9:00-9:30、12:00-12:30为骑行高峰期,需求量更大。 针对问题二:本文基于马尔科夫链算法得到不同地区共享单车的分配方法。首先,利用各个区域实际骑行次数与各个区域总骑行次数得到转移矩阵,然后运用马尔科夫链,利用MATLAB软件得到各个区域共享单车数量最终趋于稳定值,且分配量与初始值的设定无关,从而得出不同区域共享单车的分配方法。最终得到共享单车分配数量从区域1到10分别为92辆、101辆、99辆、103辆、102辆、103辆、100辆、109辆、98辆、100辆。 针对问题三:结合不同区域的共享单车需求量和不同时间段不同区域共享单车的需求量以及不同区域共享的那车归还率,采取就近原则在三个高峰期分别从区域1向区域2调动20辆,区域7向区域5调度10辆,区域9向区域8调动10辆,区域10向区域8调动15辆的调度方案,从而解决共享单车的无车可用与车辆淤积问题。 针对问题四:作为共享单车公司负责人,设计出一套合理的运营方案。主要考虑前期的市场调研以及后期的运维及盈利。前期主要调查共享单车的骑行需求、空间分布特征以及骑行行为(供给时段性及空间失衡性),后期考虑运维问题,包括成本、利润以及客户满意度。通过热量图实时观测投放量、骑行量、归还比例等数据,给出合理的投放及调度方案。 关键字:共享单车 马尔科夫链 转移矩阵 MATLAB 调度模型 一、问题重述 随着共享经济的到来,共享单车飞速发展,极大提高了生活的便利性。但共享单车资源配置还存在一定的不合理性,请基于我国共享单车行业现状,搜集相关数据,回答以下问题: (1)建立合理的指标,分析不同时空共享单车资源的需求量。 (2)给出不同地区共享单车的分配方法,使共享单车的数量分配趋于合理。 (3)依据以上研究结果,建立新的模型,设计出共享单车的调度方案。 (4)从共享单车公司负责人的角度,设计出一套合理的经营方案,并论述其合理性。 二、问题分析 2.1问题一的分析 问题一需要建立合理的指标,来分析在不同时间和空间下共享单车的需求量。“不同时空”表示的含义是在一天中的不同时间段、不同区域。本文根据所搜集的资料,选择了十个区域,并且每30分钟划为一个时间段进行讨论。 首先,将搜集到的数据进行整理。分析在十个区域共享单车的需求量有什么区别,其次分析在不同时间段,需求量有什么差异。然后根据整理的数据建立不同时空下,共享单车的需求量模型。 2.2问题二分析 题目要求给出在共享单车数量能够趋于合理的情况下,不用同地区共享单车的分配方法。 根据已搜集到的数据,我们分别统计从第 个区域到第 个区域需要共享单车的人次,再统计实际骑行的从第 个区域到其他区域的总车辆数,得到转移矩阵。每个区域之间的共享单车的移动形成马尔可夫链(makov chain),最终得到线性系数差分方程组,得到不同地区的共享单车的分配方法。 2.3问题三分析 合理的调度方案能够促使在最低的投放量达到最好的运营效果。我们分析了调度的影响因素,主要分为两个:各个时间段各个区域共享单车的需求系数和共享单车的使用周转率。通过以上两个指标衡量共享单车的调度方案,我们求出需求矩阵以及不同时间段的各个区域的实际骑行量以及需求量,进而分析得到高峰期单车调度方案。 2.4问题四分析 原本定位在校园的共享单车开始在各大城市的地铁站点,公交站点,居民区,商业区等普及,共享单车成为了人们出行的重要交通工具。在共享单车迅速发展的同时也存在着资源配置的不合理性,用户无车可用,车辆淤积以及共享单车乱停乱放现象严重影响了用户体验,同时给城市管理也带来了挑战[1]。题目要求我们作为共享单车公司负责人,设计出一套合理的经营方案,同时分析其合理性。主要从两个方面入手:前期的市场调研以及后期的经营利润,在以上两个方面,考虑到实际情况,包括投放量、市场调度、市场需求、归还等因素。 三、符号说明 符号 说明 四、模型假设 (1)假设共享单车在行驶过程中不计入任何一个区域;

    04
    领券