以下文章来源于腾讯云AI ,作者玩转新春采购的 春节已接近尾声 又一份浓浓的年味保留内心 夹带着这份美好 我们再次启程,开启搬砖模式 每一年开工季也是采购需求旺季如何买到最优惠?如何才能不焦虑? 如何让更多的中小微企业、乃至AI个体从业者也享受到技术红利? 腾讯云AI特别推出了「新春采购」钜惠大促活动 在这里 与全年真低价相遇! 一元购、五折惠、京东卡 八块八、九块九应有尽有 跟着买,不迷路 腾讯云AI没套路 ↓↓↓ 爆品·秒杀专区 在腾讯云官网主会场 推出语音识别、文字识别、人像变换等爆品
IT 行业技术迭代越来越快,作为技术人最重要的是持续学习,扩大知识面,平时的阅读也很重要,现在的学习途径有很多,我们到底该如何做出选择? 今天推荐一些行业内优质技术号,让我们的技术提升事半功倍。如果你觉得对你有用,长按二维码关注一下,大家持续交流学习。 高性能服务器开发 简介: 推崇基础学习与原理理解,不谈大而空的架构与技术术语,分享接地气的服务器开发实战技巧与项目经验,实实在在分享可用于实际编码的技术知识,提供高质量免费技术学习资源,让服务器开发技术通俗化平民化。 涉及的技术栈:C++/java、网络通
在 Forrester 最新发布的《Now Tech: Predictive Analytics And Machine Learning In China, Q3 2020》报告中,腾讯云在国内众多预测分析和机器学习领域厂商中遥遥领先,跃居第一阵营。 Forrester Now Tech是 Forrester 机构在中国乃至全球范围内具有影响力最大、市场认可度最高的报告系列之一,旨在为企业 IT 决策、产品选型等提供基于市场规模、产品功能维度的价值参考。 作为中国最大的人工智能服务提供商,腾讯云在机器学习
春节已接近尾声 又一份浓浓的年味保留内心 夹带着这份美好 我们再次启程,开启搬砖模式 每一年开工季也是采购需求旺季如何买到最优惠?如何才能不焦虑? 如何让更多的中小微企业、乃至AI个体从业者也享受到技术红利? 腾讯云AI特别推出了「新春采购」钜惠大促活动 在这里 与全年真低价相遇! 一元购、五折惠、京东卡 八块八、九块九应有尽有 跟着买,不迷路 腾讯云AI没套路 ↓↓↓ 爆品·秒杀专区 在腾讯云官网主会场 推出语音识别、文字识别、人像变换等爆品秒杀每款AI产品都打包了丰富的子产品 每日2场秒杀
整理了当年使用过的一些,大数据生态圈组件的特性和使用场景,若有不当之处,请留言斧正,一起学习成长。
Spark,是一种“One Stack to rule them all”的大数据计算框架,是一种基于内存计算的框架,是一种通用的大数据快速处理引擎。
Angel 是腾讯的首个 AI 开源项目,于 2016 年底推出、2017 年开源。作为面向机器学习的第三代高性能计算平台,Angel 致力于解决稀疏数据大模型训练以及大规模图数据分析问题。腾讯在 2018 年成为 LF AI 基金会的创始白金会员之一,并于同年向基金会贡献了开源项目 Angel。
近年来,随着深度学习技术的发展,越来越多的科技巨头开发自己的机器学习平台。昨日,华为宣布将与明年第一季度开源自家的 AI 框架 MindSpore,引起极大关注。
Spark 是一个快速(基于内存), 通用, 可扩展的集群计算引擎 并且 Spark 目前已经成为 Apache 最活跃的开源项目, 有超过 1000 个活跃的贡献者.
答案显然是否定的。一方面,人工智能技术的应用越来越广泛,应用场景不断扩大,身边的就如资讯推送、网购推荐、叫车出行、在线教育等。
在过去这几年,你可能注意到了供应商们以越来越快的步伐推出服务于AI生态系统的“平台”,即满足数据科学和机器学习的需求。“数据科学平台”和“机器学习平台”在竞相吸引数据科学家、机器学习项目经理以及管理AI项目/计划的其他人士的目光和钱袋。如果你是主要的技术供应商,但在AI领域却没有大有作为,可能会迅速沦为边缘化。但是这些平台究竟是什么?为什么上演争抢市场份额这一幕?
没错,也是腾讯第一个开源的AI项目。目前在GitHub上Star数已超过4200,Fork数超过1000。
近日,IDC发布了一部关于人工智能的白皮书。IDC在白皮书中预测了2019年中国人工智能市场的十大发展趋势,并表示到2022年,中国人工智能市场规模将达到98.4亿美元。
马士兵老师,清华大学,推动Java生根中国,推动大数据生根中国,推动AI生根中国,视频课程下载次数累计数27000万次。
雷锋网按:本文摘选自长城证券报告——互联网迎来AI 时代,海外科技巨头争先布局:人工智能深度报告(国外篇一),在未改变原意的基础上略有删减。 PC互联网时代的企业核心竞争力为软件产品的快速反应能力,移动互联网时代是构建移动端的生态系统,人工智能时代则更为依赖 AI 核心技术。 AI技术拥有两大要素: 核心技术平台 数据循环 只有将 AI 技术与数据结合,才可形成实用性的业务。本文主要侧重于介绍IBM、Google在基础层、技术层、应用层全面布局AI,并对其扩展应用场景等内容进行介绍。 IBM——Watso
本月中旬,腾讯大数据在“腾讯大数据技术峰会暨KDD China技术峰会”上宣布推出面向机器学习的第三代高性能计算平台——Angel,并预计于2017年第一季度开放其源代码,鼓励业界工程师、学者和技术人员大规模学习使用,激发机器学习领域的更多创新应用与良好生态发展。 那么,Angel是如何“以己之翼、聚众之力”,如何在蓬勃发展的机器学习浪潮中展现自己的光辉,请跟随我们,走进Angel。 Angel简介 Angel是腾讯大数据部门第三代的计算平台,使用Java和Scala语言开发,面向机器学习的高性能分布式计算
北京时间12月20日,Linux基金会旗下面向AI领域的顶级基金会——LF AI基金会(Linux Foundation Artificial Intelligence Foundation)正式宣布,腾讯开源项目Angel从LF AI基金会毕业,也是中国首个从LF AI基金会毕业的开源项目。这意味着,Angel成为世界最顶级的AI开源项目之一。 LF AI基金会执行总监Ibrahim Haddad表示:“在Angel从孵化到毕业的过程中,我们能看到Angel在新功能完善和应用场景落地方面惊人的速度。随
最新消息,腾讯开源项目Angel从LF AI基金会毕业,也是中国首个从LF AI基金会毕业的开源项目。
机器之心报道 编辑:陈萍 前段时间,机器学习开源框架 PyTorch 提供了对 AMD ROCm 的支持,现在可作为 Python 软件包提供。 作为一款被学术界和工业界广泛使用的开源机器学习框架,PyTorch 近日发布了最新的 1.8 版本,1.8 版本的发布,使得 PyTorch 加入了对 AMD ROCm 的支持,可以方便用户在原生环境下运行,省去了配置 Docker 的繁琐。 现在,一个更令人兴奋的消息是,ROCm 开放软件平台上为 PyTorch 用户提供了一个新的安装选项。一个可安装的 Pyt
现在是机器学习 ( ML ) 和人工智能 ( AI ) 的黄金时代,人工智能模型的新方法和用例持续增加。而 PyTorch 作为最流行的深度学习框架,与 AI 密切相关。 PyTorch 框架发展迅猛,现在可以说几乎占据深度学习框架的半壁江山: 它被广泛用于构建和训练神经网络,包括图像分类、语音识别、自然语言处理等应用; 它提供了简单易用的 API,可以帮助研究人员和开发人员快速构建和测试新的深度学习模型,从而 推动 AI 技术的发展; PyTorch 还支持自动微分,可以大大简化训练过程,并使神经网络的调
【导语】Angel 是腾讯的首个AI开源项目,于 2016 年底推出、2017年开源。近日,快速发展的 Angel 完成了从 2.0 版本到 3.0 版本的跨越,从一个单纯的模型训练系统进化成包含从自动特征工程到模型服务的全栈机器学习平台。作为面向机器学习的第三代高性能计算平台,Angel 致力于解决稀疏数据大模型训练以及大规模图数据分析问题。
12月20日,Linux基金会旗下面向AI领域的顶级基金会——LF AI基金会(Linux Foundation Artificial Intelligence Foundation) 宣布,腾讯开源项目Angel从LF AI基金会毕业,也是中国首个从LF AI基金会毕业的开源项目。这意味着,Angel得到全球技术专家的认可,成为世界顶级的AI开源项目之一。
在金融领域,机器学习可能会产生神奇的效果,尽管它本身并没有什么神奇之处(嗯,也许只是一点点)。然而,机器学习项目的成功更多依赖于构建高效的基础结构、收集适当的数据集和应用正确的算法。
作为一个在互联网公司面一次拿一次 Offer 的面霸,打败了无数竞争对手,每次都只能看到无数落寞的身影失望地离开,略感愧疚。
本文探讨了Go语言在机器学习领域的应用挑战,以及其未来的发展前景。Go语言作为一种强大高效的编程语言,具有优越的性能和并发性能,适合构建大规模应用程序。然而,在机器学习领域,Go仍然面临一些挑战,如缺乏高级库、没有CUDA的原生绑定以及实验约束等。虽然Go的机器学习生态系统相对较小,但一些高级库如Gonum、Gorgonia和GoLearn为Go提供了一些机器学习功能。未来,将Go视为机器学习模型服务的语言可能是更为合适的选择,同时,Go社区的持续发展和创新也将为机器学习领域带来更多的机会和解决方案。
2019年8月22日,腾讯首个AI开源项目Angel正式发布3.0版本。Angel 3.0尝试打造一个全栈的机器学习平台,功能特性涵盖了机器学习的各个阶段:特征工程、模型训练、超参数调节和模型服务。 Angel 3.0概览 (红色表示新增特性,白色表示已有但在持续改进的特性) Angel的特征工程模块基于Spark开发,增强了Spark的特征选择功能,同时使用特征交叉和重索引实现了自动特征生成。这些组件可以无缝地整合进Spark的流水线。为了让整个系统更加的智能,Angel 3.0新增了超参数调节
Python生态系统正在不断成长,并可能成为机器学习的统治平台。
11月7日,腾讯Techo开发者大会的“腾讯大数据”分论坛上,围绕大数据的新技术进展及开源生态,腾讯大数据团队进行了详细解读,包括由集群规模化与异构化挑战所引发的漂移计算等新技术创新,越来越普遍的实时计算需求以及新架构的实践,能够无限弹性扩展的、面向未来的数据湖体系结构,大数据技术发展的新趋势与新挑战等。
机器学习平台的最大的驱动力应该是面向数据科学家的基于 Python 的开源技术生态系统的蓬勃发展,比如 scikit-learn、XGBoost 和 Tensorflow/PyTorch 等等。也是因为有了这些算法库的存在,让大部分人都可以使用算法去完成自己的想法,而不需要知道艰深的数学知识,也不需要知道算法的具体实现。
2015 年,谷歌大脑开放了一个名为「TensorFlow」的研究项目,这款产品迅速流行起来,成为人工智能业界的主流深度学习框架,塑造了现代机器学习的生态系统。从那时起,成千上万的开源贡献者以及众多的开发人员、社区组织者、研究人员和教育工作者等都投入到这一开源软件库上。
机器之心报道 编辑:泽南 上周,Google 开发者大会重聚线下。 自从十年前吴恩达、Quoc Le 等人发表「识别猫」论文,引发技术革命之后,Google 一直引领着机器学习的风向,这家公司举办的开发者大会总会受到人们额外的关注。 9 月 14 日到 15 日,Google 开发者大会在上海举行。在这场活动中,Google 围绕自身在科技领域的最新技术,介绍了跨平台技术、隐私保护、机器学习、XR 等技术,以及与很多合作伙伴的最新落地成果。 在机器学习领域里,TensorFlow 作为最流行的框架一直被人
在科技的快速发展中,生成式AI(Generative AI)逐渐成为创新的重要驱动力。它通过学习大量数据来生成新内容,应用广泛,包括文本生成、图像生成、音乐创作和代码生成。各大云厂商都提供了丰富的AI服务,使企业和开发者能够更方便地构建和部署生成式AI应用。本文将详细对比AWS、GCP、Azure、阿里云和腾讯云在生成式AI方面的云服务。
编者按:本文内容来自微软美国总部机器学习科学家彭河森博士在雷锋网硬创公开课的分享。 正如程序语言一样,深度学习开源框架同样各有优劣和适用的场景,那么 AI 从业者该如何有针对性地选择这些平台来玩转深度学习? 这期的公开课特邀了先后在谷歌、亚马逊、微软供职的机器学习科学家彭河森博士为大家讲述《MXNet火了,AI从业者该如何选择深度学习开源框架》。彭河森博士亲眼见证并深入参与了这三家巨头布局深度学习的这一过程。 嘉宾介绍 彭河森,埃默里大学统计学博士。现担任微软美国总部的机器学习科学家、微软必应广告部应用资深
日前,由教育部新工科研究与实践专家组、教育部产学合作协同育人项目专家组和中国校企协同产学研创新联盟联合主办的“教育部产学合作协同育人项目第五次对接会”于11月23日在京召开。腾讯教育行业总经理龚振出席大会并发表《科技助力互联网产业人才生态建设》主题演讲。据龚振介绍,顺应产业互联网发展的需求,腾讯教育聚焦对新工科人才培养,致力于以科技助力互联网产业人才生态建设。
2015年12月10-12日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中国科学院计算技术研究所、北京中科天玑科技有限公司与CSDN共同协办,以“数据安全、深度分析、行业应用”为主题的 2015中国大数据技术大会 (Big Data Technology Conference 2015,BDTC 2015)在北京新云南皇冠假日酒店盛大开幕。 2015中国大数据技术大会第三天的大数据分析及生态系统分论坛中,来自Hortonworks、IBM、京东、百度、eBay、银联智惠和南京大学的七位专家
2019年,机器学习框架之争进入了新阶段:PyTorch与TensorFlow成为最后两大玩家,PyTorch占据学术界领军地位,TensorFlow在工业界力量依然强大,两个框架都在向对方借鉴,但是都不太理想。
2020 年 4 月,深度赋智使用全自动机器学习框架获得了国际自动机器学习领域的顶级赛事 NeurIPS-AutoDL 的冠军,并在图像、音频、视频、文本、表格不同场景的十个数据集上稳定获得八项第一和均分第一,证明了该框架在不同场景的普适性。
本文会详细介绍vivo在容器集群高可用建设中的具体实践,包括在容器集群高可用建设、容器集群自动化运维、容器平台架构升级、容器平台能力增强、容器生态打通等层面的打磨和建设。目前,vivo容器产品能力矩阵逐渐趋于完善,并将围绕全面容器化、拥抱云原生和在离线混部三个方向继续发力。
导语:在数字化、智能化的时代,通过机器学习(Machine Learning)能够强有力的补充 Hadoop 大数据系统的数据处理能力,充分挖掘大数据的核心价值,一款好的算法开发平台能够让企业事半功倍,快速的进行算法实验和生产使用,Apache Zeppelin 就是这样一个兼具了 Hadoop 大数据处理和 机器学习/深度学习算法交互式开发的开源系统。
SciSharp 是怎样的一个社区?它是如何构建一个基于 .NET 的机器学习生态?它在做的事情对开发者来说有何意义?本次,AI 科技大本营与 SciSharp 核心团队成员,包括 SciSharp 社区产品运营负责人,原 “微信”技术专利发明人George Zhao、 TensorFlow.NET 发起人和主要贡献者Eric Chen、NumSharp 主要贡献者 Eli Belash、Torch.NET与Numpy.NET的主要贡献者Meinrad Recheis和 ICSharpCore主要贡献者Kerry Jiang聊了聊,更加深入地了解这个 AI 社区及其产品。
【导读】腾讯首个AI开源项目Angel,正式发布一个里程碑式的版本:Angel 3.0。这是一个全栈机器学习平台,功能特性涵盖了机器学习的各个阶段,超过50万行代码,在 GitHub 上 Star 数已超过 4200,Fork 数超过 1000。 一个全栈机器学习平台,近日悄悄上线了。 8月22日,腾讯首个AI开源项目Angel正式发布一个里程碑式的版本:Angel 3.0。 Angel 3.0尝试打造一个全栈机器学习平台,功能特性涵盖了机器学习的各个阶段:特征工程,模型训练,超参数调节和模型服务。
腾讯首个AI开源项目Angel,正式发布一个里程碑式的版本:Angel 3.0。这是一个全栈的机器学习平台,功能特性涵盖了机器学习的各个阶段,超过50万行代码,在 GitHub 上 Star 数已超过 4200,Fork 数超过 1000。 一个全栈的机器学习平台,近日悄悄上线了。 8月22日,腾讯首个AI开源项目Angel正式发布一个里程碑式的版本:Angel 3.0。 Angel 3.0尝试打造一个全栈的机器学习平台,功能特性涵盖了机器学习的各个阶段:特征工程,模型训练,超参数调节和模型服务。
顶象防御云业务安全中心发布的一项数据显示,2022年社交平台的业务风险,三成来自安卓平台。安卓平台是如何统计出来的?其中,设备指纹是重要的一项。
所谓“秒杀”,就是网络卖家发布一些超低价格的商品, 所有买家在同一时间网上抢购的一种销售方式。 通俗一点讲就是网络商家为促销等目的组织的网上限时抢购活动。 由于商品价格低廉,往往一上架就被抢购一空,有时只用一秒钟。我们不关心秒杀活动举办的目的是比如引流,拉新等。真正值得我们关注的是自己如何能够抢购到秒杀商品
炼丹师们想必都被TF折磨过,静态图、依赖问题、莫名其妙的改接口,即便是谷歌发布了TF 2.0之后依然没有解决问题。在万般无奈下转投PyTorch后,世界都变晴了。
【新智元导读】12月18日腾讯大数据宣布推出面向机器学习的第三代高性能计算平台——Angel,并预计于2017年一季度开放其源代码。腾讯首席执行官马化腾在朋友圈发文称:“AI与大数据将成为未来各领域的标配,期待更多业界同行一起开源携手互助。”将于2017年开源的Angel是对标 Spark 的机器学习计算平台。蒋杰说,以前Spark能跑的,现在Angel快几十倍;以前Spark跑不了的,Angel也能轻松跑出来。本文内容包括新智元对蒋杰的专访,以及蒋杰在大会上演讲的文字实录和PPT。 12月18日,腾讯大数
随着 AI 技术的发展,人类社会正处于火热的智能化革命之中,AI 能力已经渗透到各行各业,在语音、图像以及 NLP 领域,已获得了突破性的进展和效果。
大家吼,我是你们的朋友煎饼狗子——喜欢在社区发掘有趣的作品和作者。【每日精选时刻】是我为大家精心打造的栏目,在这里,你可以看到煎饼为你携回的来自社区各领域的新鲜出彩作品。点此一键订阅【每日精选时刻】专栏,吃瓜新鲜作品不迷路! *当然,你也可以在本篇文章,评论区自荐/推荐他人优秀作品(标题+链接+推荐理由),增加文章入选的概率哟~
Spark拥有一个庞大的、不断增长的社区,还有在企业环境中不可或缺的生态系统。这些生态系统提供了不同生产环境案例所需的许多功能。一般来说,Spark应用做的是机器学习算法、日志聚合分析或者商务智能相关的运算,因为它在许多领域都有广泛的应用,包括商务智能、数据仓库、推荐系统、反欺诈等。 本文会介绍Spark核心社区开发的生态系统库,以及ML/MLlib及Spark Streaming的Spark库的具体用法,对于企业的各种用例及框架也进行了说明。 数据仓库 对任何业务来说,数据分析都是一个核心环节。对分析型的
人工智能开源发展对于拓展人工智能产业应用,充分发挥人工智能对产业的赋能起着重要支撑作用,这一点正在成为全球人工智能行业的共识。在海外,TensorFlow、PyTorch 等人工智能框架,在借助开源建设社区生态,吸纳全球开发者、推进人工智能创新的同时,还拓展了人工智能在产业界和学界的应用。 在中国,也有越来越多的开发者和企业意识到了人工智能开源发展的重要性,中国人工智能领域开源项目不断涌现。经 InfoQ 研究中心统计,目前人工智能领域国内开源项目已经超过 100 个,其中高度活跃开源项目占比超过 40%。
领取专属 10元无门槛券
手把手带您无忧上云