首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (下)基于算力加速的量子模拟问题

    在异构并行计算的大潮中,显卡巨头NVIDIA(英伟达)的研发团队宣布NVIDIA进军量子计算领域为量子开发者构建开发工具。NVIDIA的愿景是开发出一种混合计算模型,其中量子计算机和经典计算机可以协同工作,分别处理各自最擅长的问题。在经典-量子混合计算研究中有一个极具潜力的发展方向——经典计算机可以调用一个相对较小的量子“协处理器”做一些关键计算,其作用类似于图形处理单元GPU。研究人员期望将QPU当作一类强大的加速器,使经典和量子系统连接成混合量子计算机。混合量子计算机首先需要在GPU和QPU之间建立快速、低延迟的连接,GPU负责电路优化、校正和纠错一类传统工作,以缩短GPU执行时间。其次,量子计算行业需要一个统一且高效易用的编程模型和一个编译器工具。英伟达对提高带宽、降低延迟的设计处理等为QPU的研发提供了思路和启发,这方面最近的革新包括:第四代NVLINK和第三代NVSWITCH、InfiniBand、自研Grace CPU等。

    02

    网络虚拟化技术:RDMA技术论文

    分布式系统利用卸载来减少 CPU 负载变得越来越流行。远程直接内存访问 (RDMA) 卸载尤其变得流行。然而,RDMA 仍然需要 CPU 干预来处理超出简单远程内存访问范围的复杂卸载。因此,卸载潜力是有限的,基于 RDMA 的系统通常必须解决这些限制。 我们提出了 RedN,这是一种原则性的、实用的方法,可以实现复杂的 RDMA 卸载,无需任何硬件修改。使用自修改 RDMA 链,我们将现有的 RDMA 动词接口提升为图灵完备的编程抽象集。我们探索使用商用 RDMA NIC 在卸载复杂性和性能方面的可能性。我们展示了如何将这些 RDMA 链集成到应用程序中,例如 Memcached 键值存储,从而使我们能够卸载复杂的任务,例如键查找。与使用单侧 RDMA 原语(例如 FaRM-KV)的最先进的 KV 设计以及传统的 RPC-over-RDMA 方法相比,RedN 可以将键值获取操作的延迟减少高达 2.6 倍。此外,与这些基准相比,RedN 提供性能隔离,并且在存在争用的情况下,可以将延迟减少高达 35 倍,同时为应用程序提供针对操作系统和进程崩溃的故障恢复能力。

    04
    领券