首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Matplotlib 可视化之图表层次结构

MATLAB风格接口 MATLAB 风格的工具位于pyplot(plt) 接口中。plt.xx之类的是 函数式绘图,通过将数据参数传入 plt类 的静态方法中并调用方法,从而绘图。...面向对象接口可以适应更复杂的场景,更好地控制你自己的图形。在面 向对象接口中,画图函数不再受到当前 "活动" 图形或坐标轴的限制,而 变成了显式的 Figure 和 Axes 的方法。...Step4 设置网格 第四步,设置图表的网格, 图表网格属于图形配置的一种。网格可以辅助读者更好直观地量化图形。 设置网格 通过方法ax.grid()添加网格线。...用 Matplotlib 通过标准的 legend 接口只能为一张图建一个图例。如果你想用 plt.legend() 或 ax.legend() 方法创建第二个图例,那么第一个图例就会被覆盖。...但是,我们可以通过从头开始创建一个新的图例对象(legend artist),然后用底层的(lower- level)ax.add_artist() 方法在图上添加第二个图例。

4.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【matplotlib】4-完善统计图形

    方便观察者辨识,这个标签说明就是图例。 同样,如果观察者想要清楚地了解绘图区域中的内容。...就需要给绘图区域添加文本内容用以说明绘图区域的主要内容,标题就可以让观察者清楚地知道绘图区域的核心信息和图标内容。...需要说明的是,在字符串r”text\text2 1.2 案例1–图例的展示样式的调整 不仅图例的显示位置可以改变,图例的展示样式也可以进行调整,比如图例的外边框、图例中的文本标签的排列位置和图例的投影效果等方面...同理,刻度标签的样式也会对可视化效果造成影响。如果可以根据具体的数据结构和数据形式采用合适的刻度标签样式,那么不仅可以将数据本身的特点很好的地展示出来,还可以让可视化效果变得更加理想。...想要举一反三的同学可以试试将前面讲的饼图外部文本添加到图例中,让图形更加直观。

    2.7K20

    数据科学 IPython 笔记本 8.4 简单的折线图

    ,我们可以简单地多次调用plot函数: plt.plot(x, np.sin(x)) plt.plot(x, np.cos(x)); 这就是在 Matplotlib 中绘制简单函数的全部内容!...调整绘图:轴域限制 在为你的绘图选择默认轴域限制方面,Matplotlib 做得不错,但有时候手动控制会更好。...更多信息请参阅 Matplotlib 文档以及每个函数的文档字符串。 当在单个轴中显示多条线时,创建标记每种线条类型的图例是很有用的。...同样,Matplotlib 有一种内置方式,用于快速创建这样的图例。它是通过(你猜对了)plt.legend()方法完成的。...指定和格式化图形图例的更多信息,可以在plt.legend的文档字符串中找到;此外,我们将在“自定义图例”中,介绍一些更高级的图例选项。

    1K30

    python绘图与数据可视化(二)

    Matplotlib figure图形对象 通过前面的学习,我们知道matplotlib.pyplot模块能够快速地生成图像,但如果使用面向对象的编程思想,我们就可以更好地控制和自定义图像。...在 Matplotlib 中,面向对象编程的核心思想是创建图形对象(figure object)。通过图形对象来调用其它的方法和属性,这样有助于我们更好地处理多个画布。...比如,[ 0.1, 0.1, 0.8, 0.8],它代表着从画布 10% 的位置开始绘制, 宽高是画布的 80% legend()绘制图例 axes 类的 legend() 方法负责绘制画布中的图例,它需要三个参数...坐标格式 ​ 通过 Matplotlib axes 对象提供的 grid() 方法可以开启或者关闭画布中的网格(即是否显示网格)以及网格的主/次刻度。...“-”负号的乱码问题 Matplotlib双轴图 在一些应用场景中,有时需要绘制两个 x 轴或两个 y 轴,这样可以更直观地显现图像,从而获取更有效的数据。

    17310

    软件测试|使用matplotlib绘制平行坐标系图

    简介 绘制平行坐标系图(Parallel Coordinates Plot)是一种用于可视化多维数据的强大方法。...首先,导入必要的库: import matplotlib.pyplot as plt 然后,我们可以创建一个平行坐标系图: # 创建一个绘图区域 plt.figure(figsize=(10, 6))...第一个参数是包含数据的DataFrame,第二个参数是要突出显示的特征名称。你可以根据需要选择其他特征。 定制平行坐标系图 平行坐标系图提供了许多定制选项,以便更好地呈现数据。...以下是一些示例定制选项: 颜色:你可以为不同的特征线段指定不同的颜色。 透明度:通过设置线段的透明度,可以减少重叠线段的混淆。 标签:添加轴标签和图例以提供更多信息。...在本文中,我们介绍了如何使用Matplotlib创建平行坐标系图,包括生成示例数据集、绘制图表以及定制图表。你可以根据自己的需求和数据来进一步扩展和定制平行坐标系图,以更好地理解和传达数据。

    42030

    数据科学 IPython 笔记本 8.9 自定义图例

    绘图的图例将意义赋予可视化,为各种绘图元素标识意义。我们以前看过如何创建简单的图例;在这里,我们将介绍如何在 Matplotlib 中自定义图例的位置和样式。...可以使用plt.legend()命令创建最简单的图例,该命令会自动为任何已标记的绘图元素创建图例: import matplotlib.pyplot as plt plt.style.use('classic...为此,一个很好的工具选择是 Matplotlib 的 Basemap 附加工具包,我们将在“地理数据和 Basemap”中探讨。 多个图例 有时在设计绘图时,你需要在同一轴域上添加多个图例。...不幸的是,这对 Matplotlib 并不容易:通过标准的legend接口,只能为整个绘图创建一个图例。...我们可以通过从头开始创建一个新的图例艺术家来解决这个问题,然后使用较低级别的ax.add_artist()方法,手动将第二个艺术家添加到绘图中: fig, ax = plt.subplots() lines

    1.9K20

    Python matplotlib绘制折线图

    上面的例子中用了NBA2020年季后赛James的得分数据。 show(): 展示图像。 在上面的图表中,x坐标值中有中文,首次使用matplotlib绘图时中文无法正常显示。...要在同一张图像中展示多条折线图,多次调用plot()函数就行。每条折线图的颜色、样式等可以分别设置,以便更好地进行区分。...每一张图表中的标签、标题、样式、图例等都需要单独设置,为了避免代码过于冗余,可以使用循环。绘制每一张图表时,从axs中取出每一张图表,再调用plot()函数绘图。...在设置坐标轴、标签、标题时,使用'set_'开头的方法进行设置,如设置x轴标签用set_xlabel()。 autofmt_xdate(): x轴坐标值自适应倾斜。...因为一张图像中有多张图表,x坐标值靠得很近,可能会因重叠造成展示效果差,使用fig对象的autofmt_xdate()方法可以设置自适应倾斜。

    5.7K20

    Matplotlib常见组件设置整理

    继上一篇文章为大家介绍了plt和ax绘图的区别后,这篇文章结合我自己的一些使用经历,为大家整理了Matplotlib中比较常用的一些组件设置。...先上一张官方绘制的关于各个组件在一张图中的名词解释,通过这张图可以很直观地感受到什么是legend,什么是tick……,遇到不会设置的也可以照着图搜索对应的文档,下面具体讲讲。 ?...要显示图例可以有两种方式: # 第一种: # plot的时候加上label,之后调用ax.legend() fig,ax = plt.subplots() ax.plot(['北京','上海','深圳'...图形与边框之间的留白控制 函数:ax.margins() 不知道大家绘图的时候有没有发现,Matplotlib中默认在我们所画的图形和边框之间留有空白,比如 ?...使用中,需要对原有的ax使用.twinx()方法生成ax2,再利用ax2进行绘图 fig,ax = plt.subplots() ax.plot(['北京','上海','深圳'],[1,3,5],color

    1.5K62

    Python 的 Matplotlib 绘图库:一种强大的数据可视化工具

    Python 是一种广泛使用的编程语言,它的优点之一就是有大量的库可以用来处理各种任务。在这篇文章中,我将介绍一个用于数据可视化的强大工具:Matplotlib。...Matplotlib 的绘图技巧 Matplotlib 提供了许多绘图技巧,可以帮助我们创建更有吸引力和更具信息量的图像。例如: 使用颜色、线型和标记来区分不同的数据系列。...添加图例、标题和标签来解释你的数据。 调整坐标轴的范围和刻度来更好地展示你的数据。 使用子图来展示多个相关的图像。...在 Matplotlib 中显示中文 默认情况下,Matplotlib 可能不支持中文字符的显示。但我们可以通过指定一个支持中文的字体来解决这个问题。...为了让这个图像更有吸引力,我们将使用一些绘图技巧,比如添加标题和标签,调整坐标轴的范围,以及使用不同的颜色和线型。

    28020

    Hans Rosling Charts Matplotlib 绘制

    可以说,Hans Rosling 让数据变得不再枯燥无味,使其生动的展示在大众面前,为了对这位伟大的统计学家的怀念(Hans Rosling 于2017年2月7日离开了这个世界), 本次教程将使用Python...还需要对不同地区(Region)进行颜色赋值(这里我主要分成四个地区,也可以按照country_metadata.csv文件中的设定进行地区分类,本文如此设置,纯属为了绘图方便,本意无其他任何含义),主要代码如下...(5)第 63-78 行为对多类别散点图图例的制作(多数类似教程忽略了图例的添加,导致绘制的图表不够完善),但随着Matplotlib 3.1版本的发布,PathCollection新增加一个方法legend_elements...(),实现以自动方式获取散点图的句柄和标签,极大简化了散点图图例的创建,下面给出样例,感兴趣的也可以前往Matplotlib官网查看,本例子没有采用最新方法。...以上,基于matplotlib的动态气泡图就绘制完成了,难点:在于多类别图例的添加,可以参考本文方法也可参考官网方法。 下面给出本例子其中一年份数据绘图的结果图 : ? 04.

    3K30

    基于可视化理论的清晰Python图表

    信息展示的支柱 图表的卓越性 这代表演示的质量。通过删除多余的形状、分散的颜色和不一致的字体,可以更好地查看数据。根据我(以及Edward Tufte)的经验,卓越的图表源于许多小变化累积出的优势。...Plotly:数据科学、数据分析以及我的职业生涯未来的绘图工具。 在整个过程中,plotly可以为用户提供更多的工具来保持图形的卓越和完整。 0. 准备 image.png 这是将要构建的图表。...提供更高级的演示的平台。 本文的末尾叙述了准备(导入和数据加载)的过程,大家可以按需复制。依赖的壁垒很低,因此可以轻松获得顶层绘图和安全的保存机制。...创建新的数据可视化的第一步是让用户为失败做好准备。...它可以a)控制图例的形状和位置,b)移除图表周围的空白。试试看并查看相应的API,可以发现大量的工具。

    2.1K00

    Matplotlib傲视数据可视化江湖

    在代码的世界中,隐藏着一座神秘而神奇的画图殿堂,它就是Matplotlib。这座殿堂矗立在数据的海洋中,每一行代码都是一笔神奇的咒语,让数据在图像之间舞动,展现出无限可能。...Matplotlib使用场景 任何库都是有自己的一些特定的使用场景,Matplotlib作为一个功能强大的Python绘图库,主要用于创建高质量的静态图表、绘图和数据可视化。...数据分析和探索:通过Matplotlib,用户可以将数据以各种不同的图表形式展示出来,比如折线图、柱状图、散点图、饼图等,帮助用户更直观地了解数据特征、趋势和关联。...Web应用和报表生成:Matplotlib也可以轻松集成到Web应用程序中,用于动态生成图表、报表或数据可视化展示,为用户提供更加直观的数据呈现。...() 大家可以将以上程序复制到相关IDE中运行一下看看效果。

    16010

    Python数据可视化入门教程

    数据可视化是为了使得数据更高效地反应数据情况,便于让读者更高效阅读,通过数据可视化突出数据背后的规律,以此突出数据中的重要因素,如果使用Python做数据可视化,建议学好如下这四个Python数据分析包...灵活的分组功能:group by数据分组; 直观地合并功能:merge数据连接; 灵活地重塑功能:reshape数据重塑; pandas库不仅可以做一些数据清洗的工作,还可以使用pandas作图,并且做图时...,使用一行代码就可以轻松作图,详细的作图方法可以看代码中的注释。...#多个图的绘图方法 import numpy as np import matplotlib.pyplot as plt x=np.array([1,3,5]) y1=x y2=x...,使用plt.subplot命令首先确定绘图的位置,比如plt.subplot(223)表示在2*2分布的图表中第三个位置,其余的绘图命令相似。

    2.4K40

    【Python】数据可视化教程来了!

    本项目重点希望在两个层面帮助读者构建matplotlib的知识体系(文末有开源教程地址): 从图形,布局,文本,样式等多维度系统梳理matplotlib的绘图方法,构建对于绘图方法的整体理解 从绘图API...第一回:Matplotlib初相识 第二回:艺术画笔见乾坤 第三回:布局格式定方圆 第四回:文字图例尽眉目 第五回:样式色彩秀芳华 这五个章节将从不同的维度(matplotlib概述,绘图元素,布局格式...,文字图例,样式色彩)介绍如何进行可视化绘图。...他们的区别在于OO模式更为底层,是一种面向对象的思路,从代码上更为复杂,但同时也更灵活。...在本章中还针对artist元素,重点演示两种绘图接口的使用方法,对于常见的基本元素,matplotlib都提供了OO模式和pyplot模式的现成方法供使用者选择。

    1.7K20

    动态气泡图绘制,超简单~~

    还需要对不同地区(Region)进行颜色赋值(这里我主要分成四个地区,也可以按照country_metadata.csv文件中的设定进行地区分类,本文如此设置,纯属为了绘图方便,本意无其他任何含义),主要代码如下...但想要完美解决,还需要要解决如下问题:matplotlib设置刻度间隔相等,但不同间隔表示不同的值,如下: 希望有知道解决方法的小伙伴可以留言告知啊,感谢!!!...(5)第 63-78 行为对多类别散点图图例的制作(多数类似教程忽略了图例的添加,导致绘制的图表不够完善),但随着Matplotlib 3.1版本的发布,PathCollection新增加一个方法legend_elements...(),实现以自动方式获取散点图的句柄和标签,极大简化了散点图图例的创建,下面给出样例,感兴趣的也可以前往Matplotlib官网查看,本例子没有采用最新方法。...以上,基于matplotlib的动态气泡图就绘制完成了,难点:在于多类别图例的添加,可以参考本文方法也可参考官网方法。 下面给出本例子其中一年份数据绘图的结果图 : 04.

    3.6K20

    matplotlib - matplotlib 教程

    Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 ? Pyplot 教程 关于pylot接口的介绍。...对于更多的控制 - 这对于在GUI应用程序中嵌入matplotlib图表这一点至关重要 - 可以完全删除pyplot级别,从而留下纯粹面向对象的方法。...但是,如果您想编写图形用户界面或Web应用程序服务器(Web应用程序服务器中的Matplotlib),或者需要更好地了解正在发生的事情,请继续阅读。...为了使图形用户界面可以更加自定义,matplotlib将画布(绘图所在的位置)中的渲染器(实际绘制的东西)的概念分开。...或者,您可以为交互式绘图(具有最大简化)创建新样式,并为出版质量绘图创建另一种样式(最小化简化)并根据需要激活它们。

    4.6K31
    领券