首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python list列表中每一个数字乘于2的两种多功能函数代码设计

Python list列表中每一个数字乘于2或一个数字要让Python中list列表中的每一个数字乘于2,可以有两种方法,一是使用列表推导式来完成,另一种是使用map()函数来完成。...列表推导式法为了让列表推导式的代码能够重复利用,而且能够根据要乘的数字的不同而得到不同的结果,下面的实例代码将被封装为一个函数,如下:def listEleDouble(listObj, n):...(list1, 2)print(newList)map()函数法使用map()函数法来为list列表中的每一个数字乘于2,可以先定义一个函数,以作为参数传递给map()函数,顺便介绍一下,map()函数可以将列表或其它可迭代的...Python对象中的逐个元素作为参数传递给map()中的函数参数,具体可参考如下代码:def listX2(ele): return ele*2list1 = [0,1,2,3,4,5,6]newList...= list(map(listX2, list1))print(newList)来源:Python list列表中每一个数字乘于2怎么乘,两种方法免责声明:内容仅供参考,不保证正确性!

29720
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 全栈 191 问(附答案)

    如何使用列表创建出斐波那契数列?使用 yield 又怎么创建 ?...找出列表中出镜最多的元素,可能有多个 a = [1,2,3,4,5],如何一行代码返回:[(1,2),(2,3),(3,4),(4,5)] sample 函数实现何功能?...shuffle 函数实现什么功能? uniform 函数实现什么功能? 说说你知道的创建字典的几种方法? 字典视图是什么? 所有对象都能作为字典的键吗? 集合内的元素可以为任意类型吗?...如何快速判断一个字符串中所有字符是否唯一? 给定 n 个集合,如何使用 max 函数求出包含元素最多的集合? 找出字典前 n 个最大值对应的键 怎么一行代码合并两个字典?...Python 中如何创建线程,以及多线程中的资源竞争及暴露出的问题 多线程鸡肋和高效的协程机制的相关案例 列表和迭代器有何区别? 如何拼接多个迭代器,形成一个更大的可迭代对象?

    4.2K20

    8个Python高效数据分析的技巧。

    1 一行代码定义List 定义某种列表时,写For 循环过于麻烦,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。下面是使用For循环创建列表和用一行代码创建列表的对比。...Lambda表达式用于在Python中创建小型,一次性和匿名函数对象, 它能替你创建一个函数。 lambda表达式的基本语法是: lambda arguments: expression 注意!...只要有一个lambda表达式,就可以完成常规函数可以执行的任何操作。...df.shape (# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数。...Pandas内置的pivot_table函数以DataFrame的形式创建电子表格样式的数据透视表,,它可以帮助我们快速查看某几列的数据。

    2.3K10

    8 个 Python 高效数据分析的技巧

    一行代码定义List 定义某种列表时,写For 循环过于麻烦,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。 ? 下面是使用For循环创建列表和用一行代码创建列表的对比。...Lambda表达式用于在Python中创建小型,一次性和匿名函数对象。它能替你创建一个函数。...具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。在本例中,它遍历每个元素并乘以2,构成新列表。请注意,list()函数只是将输出转换为列表类型。...回想一下Pandas中的shape df.shape (# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...Pandas内置的pivot_table函数以DataFrame的形式创建电子表格样式的数据透视表,,它可以帮助我们快速查看某几列的数据。

    2.7K20

    Python骚操作,提取pdf文件中的表格数据!

    此时,页面上的整个表格被放入一个大列表中,原表格中的各行组成该大列表中的各个子列表。若需输出单个外层列表元素,得到的便是由原表格同一行元素构成的列表。...此时,表格的每一行都作为一个单独的列表,列表中每个元素即为原表格的各个单元格内容。若需输出某个元素,得到的便是具体的数值或字符串。如下: Python骚操作,提取pdf文件中的表格数据!...DataFrame的基本构造函数如下: DataFrame([data,index, columns]) 三个参数data、index和columns分别代表创建对象、行索引和列索引。...DataFrame类型可由二维ndarray对象、列表、字典、元组等创建。本推文中的data即指整个pdf表格,提取程序如下: Python骚操作,提取pdf文件中的表格数据!...其中,table[1:]表示选定整个表格进行DataFrame对象创建,columns=table[0]表示将表格第一行元素作为列变量名,且不创建行索引。

    7.4K10

    图解pandas模块21个常用操作

    2、从ndarray创建一个系列 如果数据是ndarray,则传递的索引必须具有相同的长度。...3、从字典创建一个系列 字典(dict)可以作为输入传递,如果没有指定索引,则按排序顺序取得字典键以构造索引。如果传递了索引,索引中与标签对应的数据中的值将被拉出。 ?...7、从列表创建DataFrame 从列表中很方便的创建一个DataFrame,默认行列索引从0开始。 ?...8、从字典创建DataFrame 从字典创建DataFrame,自动按照字典进行列索引,行索引从0开始。 ?...21、apply函数 这是pandas的一个强大的函数,可以针对每一个记录进行单值运算而不需要像其他语言一样循环处理。 ? ? 整理这个pandas可视化资料不易

    9K22

    最全面的Pandas的教程!没有之一!

    ., len(data) - 1] ,如下所示: 从 NumPy 数组对象创建 Series: ? 从 Python 字典对象创建 Series: ?...构建一个 DataFrame 对象的基本语法如下: 举个例子,我们可以创建一个 5 行 4 列的 DataFrame,并填上随机数据: 看,上面表中的每一列基本上就是一个 Series ,它们都用了同一个...从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...你可以从一个包含许多数组的列表中创建多级索引(调用 MultiIndex.from_arrays ),也可以用一个包含许多元组的数组(调用 MultiIndex.from_tuples )或者是用一对可迭代对象的集合...下面这个例子,我们从元组中创建多级索引: ? 最后这个 list(zip()) 的嵌套函数,把上面两个列表合并成了一个每个元素都是元组的列表。

    26K64

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    最直接的办法是使用loc函数并传递::-1,跟Python中列表反转时使用的切片符号一致: ? 如果你还想重置索引使得它从0开始呢?...按行从多个文件中构建DataFrame 假设你的数据集分化为多个文件,但是你需要将这些数据集读到一个DataFrame中。 举例来说,我有一些关于股票的小数聚集,每个数据集为单天的CSV文件。...为了避免这种情况,我们需要告诉concat()函数来忽略索引,使用默认的整数索引: ? 10. 按列从多个文件中构建DataFrame 上一个技巧对于数据集中每个文件包含行记录很有用。...现在我们的DataFrame已经有六列了。 11. 从剪贴板中创建DataFrame 假设你将一些数据储存在Excel或者Google Sheet中,你又想要尽快地将他们读取至DataFrame中。...将一个由列表组成的Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ? 这里有两列,第二列包含了Python中的由整数元素组成的列表。

    3.2K10

    针对SAS用户:Python数据分析库pandas

    在SAS例子中,我们使用Data Step ARRAYs 类同于 Series。 以创建一个含随机值的Series 开始: ? 注意:索引从0开始。...一个Series可以有一个索引标签列表。 ? Series由整数值索引,并且起始位置是0。 ? SAS示例使用一个DO循环做为索引下标插入数组。 ? 返回Series中的前3个元素。 ?...此外,一个单列的DataFrame是一个Series。 像SAS一样,DataFrames有不同的方法来创建。可以通过加载其它Python对象的值创建DataFrames。...列列表类似于PROC PRINT中的VAR。注意此语法的双方括号。这个例子展示了按列标签切片。按行切片也可以。方括号[]是切片操作符。这里解释细节。 ? ?...在删除缺失行之前,计算在事故DataFrame中丢失的记录部分,创建于上面的df。 ? DataFrame中的24个记录将被删除。

    12.1K20

    Pandas 2.2 中文官方教程和指南(一)

    下一步是创建一个新的 conda 环境。conda 环境类似于一个允许您指定特定版本的 Python 和一组库的虚拟环境。从终端窗口运行以下命令。...有关 Miniconda 的安装说明可以在这里找到。 下一步是创建一个新的 conda 环境。conda 环境类似于一个允许您指定特定 Python 版本和一组库的虚拟环境。从终端窗口运行以下命令。...使用 Python 字典列表时,字典键将用作列标题,每个列表中的值将用作DataFrame的列。...注意 内部方括号定义了一个Python 列表,其中包含列名,而外部方括号用于从 pandas DataFrame 中选择数据,就像在前面的示例中看到的那样。...注意 内部方括号定义了一个Python 列表,其中包含列名,而外部方括号用于从 pandas DataFrame中选择数据,就像在前面的示例中看到的那样。

    98410

    【Python环境】Python中的结构化数据分析利器-Pandas简介

    二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。...或者以数据库进行类比,DataFrame中的每一行是一个记录,名称为Index的一个元素,而每一列则为一个字段,是这个记录的一个属性。...从列表的字典构建DataFrame,其中嵌套的每个列表(List)代表的是一个列,字典的名字则是列标签。这里要注意的是每个列表中的元素数量应该相同。...否则会报错: ValueError: arrays must all be same length 从字典的列表构建DataFrame,其中每个字典代表的是每条记录(DataFrame中的一行),字典中每个值对应的是这条记录的相关属性...从CSV中读取数据: df = pd.read_csv('foo.csv') R中的对应函数: df = read.csv('foo.csv') 将DataFrame写入CSV: df.to_csv('

    15.1K100

    python数据分析——数据的选择和运算

    综上所述,Python在数据分析中的数据选择和运算方面展现出了强大的能力。通过合理的数据选择和恰当的运算处理,我们可以从数据中获取到宝贵的信息和洞见,为决策提供有力的支持。...而在选择行和列的时候可以传入列表,或者使用冒号来进行切片索引。...数据获取 ①列索引取值 使用单个值或序列,可以从DataFrame中索引出一个或多个列。...merge()是Python最常用的函数之一,类似于Excel中的vlookup函数,它的作用是可以根据一个或多个键将不同的数据集链接起来。...【例】创建两个不同的数据帧,并使用merge()对其执行合并操作。 关键技术:merge()函数 首先创建两个DataFrame对象。

    19310

    盘一盘 Python 系列 4 - Pandas (上)

    1 数据表的创建 数据表有三大类型 Series: 一维数据,类似于 python 中的基本数据的 list 或 NumPy 中的 1D array。...因此在创建 Series 时,如果不显性设定 index,那么 Python 给定一个默认从 0 到 N-1 的值,其中 N 是 x 的长度。...我们可以从头或从尾部查看 DataFrame 的 n 行,分别用 df2.head() 和 df2.tail(n),如果没有设定 n,默认值为 5 行。...上节都是手敲一些数据来创建「多维数据表」的,现实中做量化分析时,数据量都会很大,一般都是从量化平台中或者下载好的 csv 中直接读取。本节介绍如何从量化平台「万矿」中读取数据来创建「多维数据表」的。...多层索引 Series 首先定义一个 Series,注意它的 index 是一个二维列表,列表第一行 dates 作为第一层索引,第二行 codes 作为第二层索引。

    6.3K52

    4个解决特定的任务的Pandas高效代码

    在本文中,我将分享4个在一行代码中完成的Pandas操作。这些操作可以有效地解决特定的任务,并以一种好的方式给出结果。 从列表中创建字典 我有一份商品清单,我想看看它们的分布情况。...这里可以使用value_counts和to_dict函数,这项任务可以在一行代码中完成。...由于json_normalize函数,我们可以通过一个操作从json格式的对象创建Pandas DataFrame。 假设数据存储在一个名为data的JSON文件中。...需要重新格式化它,为该列表中的每个项目提供单独的行。 这是一个经典的行分割成列的问题。有许多的不同的方法来解决这个任务。其中最简单的一个(可能是最简单的)是Explode函数。...如果我们想要使用3列,我们可以链接combine_first函数。下面的代码行首先检查列a。如果有一个缺失的值,它从列B中获取它。如果列B中对应的行也是NaN,那么它从列C中获取值。

    25710

    初学者的10种Python技巧

    对于单行-if,我们从测试条件为真时要输出的值开始。 此代码将单行(如果具有列表理解)组合以输出1(其中植物是兰花),否则输出0。...#8 —将lambda应用于DataFrame列 pandas DataFrame是一种可以保存表格数据的结构,例如Excel for Python。...它使我们能够对DataFrame中的值执行操作,而无需创建正式函数-即带有def and return 语句的函数 ,我们将在稍后介绍。...根据 PEP8,Python样式指南: 包装长行的首选方法是在括号,方括号和花括号内使用Python的隐含行连续性。...#5 —读取.csv并设置索引 假设该表包含一个唯一的植物标识符,我们希望将其用作DataFrame中的索引。我们可以使用index_col参数进行设置。

    2.9K20

    pandas的类SQL操作

    数据查询 查询过程主要是从DataFrame中提取符合条件的数据块的过程,这一过程与SQL中的SELECT语法功能相似,我们从简到繁的介绍一下: data = pd.DataFrame([['1','2...) print(data.iloc[:, 0:3]) 此时查询出的小数据集全是DataFrame结构,比较也可以发现,iloc的函数灵活度较高。...其二:代码中的“:”类似于between……and的功能,在loc和iloc中都可以使用,但仅支持序列号。 其三:loc函数中代表列的部分不能用序列号,iloc函数中行和列位置都可以用序列号。...多DataFrame的查询主要是解决SQL中join和concat的问题,python中主要使用merge和concat来实现对应的功能具体写法如下: Merge的用法:merge主要是用作按行拼接,类似于...结合上文有没有发现,同样的功能,python比SQL简单,这也是python的一大优势。

    1.9K21
    领券