首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

K近邻算法 K近邻算法原理

# K近邻算法 K近邻算法原理## $k$近邻算法介绍- $k$近邻法 (k-Nearest Neighbor;kNN) 是一种比较成熟也是简单机器学习算法,可以用于基本分类与回归方法- 算法主要思路...:对新样本,根据其k个最近邻训练样本标签值均值作为预测值。...- $k$近邻法是基本且简单分类与回归方法。...$k$近邻基本做法是:对给定训练实例点和输入实例点,首先确定输入实例点$k$个最近邻训练实例点,然后利用这$k$个训练实例点多数来预测输入实例点类。...- $k$值选择反映了对近似误差与估计误差之间权衡,通常由交叉验证选择最优$k$。- 常用分类决策规则是多数表决,对应于经验风险最小化。## $k$近邻算法流程 1.

15200

K 近邻算法

K近邻是机器学习算法中理论简单,最好理解算法,虽然算法简单,但效果也不错。...Neighbors)算法,即K最近邻算法,是一种监督学习算法,可以用于分类和回归问题。...其基本思想是:给定一个训练数据集,对于新输入实例,在训练数据集中找到与该实例邻近K个实例,这K个实例多数属于某个类别,则该输入实例也属于这个类别。...KNN算法优点: 算法简单,易于理解。 适用于多分类问题。 对于一些非线性问题,KNN算法具有较好性能。...KNN算法缺点: 当训练数据集较大时,计算距离时间复杂度较高。 K值选择对算法性能影响较大,但目前没有确定K值通用方法。 对于不平衡数据集,KNN算法性能较差。

12622
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    K 近邻算法

    机器学习基本概念 本文中我们来介绍简单分类算法:k 近邻算法(kNN) 2. k 近邻算法 k 近邻算法是一种采用测量不同特征值之间距离方法对样本进行分类算法。...他工作原理是,存在一个样本数据集合,并且每个数据都存在分类标签,对于没有标签新数据,将这个新数据每个特征与样本集中数据对应特征进行比较,然后提取样本集中特征相似的数据(最近邻)分类标签。...通常来说,我们只选择样本数据集中前 k 个相近数据,这就是 k 近邻算法得名,通常 k 都不大于 20,在这 k 个数据中,出现次数最多分类就输出作为新数据分类。 2.1....样本距离计算 计算样本数据距离是非常简单: 上面的公式进行推广就是欧式距离计算公式: 2.2. 优点 k 近邻算法具有下面三个优点: 1....缺点 但是,k近邻算法也具有下面的缺点: 1. 计算复杂性高;空间复杂性高 2. 样本不平衡问题(即有些类别的样本数量很多,而其它样本数量很少) 3. 一般数值很大时候不用这个,计算量太大 4.

    75010

    KNN近邻算法

    K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单方法之一。所谓K最近邻,就是k个最近邻居意思,说是每个样本都可以用它最接近k个邻居来代表。...kNN算法核心思想是如果一个样本在特征空间中k个相邻样本中大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本特性。...-- 邻近算法 百度百科 KNN近邻算法思想 根据上文 K-means 算法分类,可以将一堆 毫无次序 样本分成N个簇,如下: ?...3个点为:K、M、U、W,无法判断 黄色四边形 属于哪个簇,因此不能为偶数 当K=5时,直观看出 黄色四边形 周围3个点为:K、M、U、W、Z,就可以判断 黄色四边形 属于绿色簇 KNN近邻算法就是以一定量训练样本...,来对其他未知样本进行分类,分类标准和选取K值有很大关系 KNN近邻算法实现 假设训练样本为: clusters = { 'cluster2': {'H': {'y': 25, 'x': 27

    87440

    K近邻算法

    k近邻算法思想了,最近邻算法是k近邻算法k=1时一种特殊情况。...基本概念 确定一个样本所属类别的一种简单方法是直接比较它和所有训练样本相似度,然后将其归类相似的样本所属那个类,这是一种模板匹配思想。下图6.1是使用k近邻思想进行分类一个例子: ?...预测算法 k近邻算法没有求解模型参数训练过程,参数k由人工指定,它在预测时才会计算待预测样本与训练样本距离。...,c 3.最终分类结果为argmaxiCi 在这里argmaxiCi表示最大值Ci对应那个类i。如果看k=1,k近邻算法退化成最近邻算法。...在实现时可以考虑样本权重,即每个样本有不同投票权重,这称方法称为为带权重k近邻算法。另外还其他改进措施,如模糊k近邻算法[2]。 kNN算法也可以用于回归问题。

    1.6K11

    K-近邻算法

    K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同特征值之间距离方法进行分类。...该方法思路是:如果一个样本在特征空间中k个相似(即特征空间中最邻近)样本中大多数属于某一个类别,则该样本也属于这个类别。 优点:精度高、对异常数据不敏感、无数据输入假定。...输入没有标签新数据后,将新数据每个特征与样本集中数据对应特征进行比较,然后算法提取样本集中特征相似的数据(最近邻分类标签。 一般来说我们只选择样本数据集中前k个相似的数据。...2.准备数据:距离计算所需要数值,最好是结构化数据格式。 3.分析数据:可使用任何方法。 4.训练算法:此步骤不适用与K-近邻算法 5.测试算法:计算错误率。...6.使用算法:首先需要输入样本数据和结构化输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出分类执行后续处理。 2.

    1.4K50

    python k近邻算法_python中k最近邻算法示例

    参考链接: K最近邻Python实现 python k近邻算法       K最近邻居(KNN) (K-Nearest Neighbors (KNN))       KNN is a supervised...KNN是一种监督机器学习算法,可用于解决分类和回归问题。 KNN原理是数据点值或类,由该值周围数据点确定。        ...为了理解KNN分类算法,通常最好通过示例来展示。 本教程将演示如何在遇到自己分类问题情况下在Python中使用KNN。...预测算法计算从未知点x到数据中所有点距离。 然后,通过增加与x距离来对数据中点进行排序。 通过从“ K”个最接近点预测多数标签来进行预测。        ...https://towardsdatascience.com/k-nearest-neighbors-algorithm-in-python-by-example-79abc37a4443  python k近邻算法

    1.4K00

    K近邻算法小结

    什么是K近邻? K近邻一种非参数学习算法,可以用在分类问题上,也可以用在回归问题上。 什么是非参数学习?...相比较而言,k近邻算法可以说是简单,也是容易理解一种机器学习算法了。 K近邻算法思想?...K值选择会对k近邻算法结果产生重大影响。 具体怎么解释呢?...总体而言,如果k值太小,就相当于用较小邻域中训练实例进行预测,“学习”近似误差会减小,缺点是“学习”估计误差会增大,预测结果会对近邻实例点非常敏感,如果近邻实例点恰巧是噪声就会出错。...总体而言,在数据集一定情况下, K近邻算法表现如何主要取决于上面提到三个要素:K值选择,距离度量方式和分类决策规则。

    748120

    算法图解》note 10 K近邻算法1.K近邻算法简介2.python实现方式3.K近邻算法优缺点

    这是《算法图解》第十篇读书笔记,内容主要是K邻近算法介绍。...1.K近邻算法简介 K近邻算法(K-nearest neighbor)是一个给定训练数据,根据样本数据最近K个实例类别来判断样本数据类别或数值算法。...该算法可细分为两种类型:判断样本类别的分类算法,计算样本数据算法。 2.python实现方式 可用pythonscikit-learn包实现K近邻算法。...调用包方式如下: from sklearn import neighbors #K近邻算法分类算法 classifier=neighbors.KNeighborsClassifier() #K近邻算法回归算法...regressor=neighbors.KNeighborsRegressor() 3.K近邻算法优缺点 3.1优点 (1)可处理分类问题和回归问题。

    846100

    K近邻算法Python实现

    K-近邻(K-Nearest Neighbors)算法是思想简单、易于理解一种分类和回归算法。...它并未试图建立一个显示预测模型,而是直接通过预测点临近训练集点来确定其所属类别。 K近邻算法实现主要基于三大基本要素: K选择; 距离度量方法的确定; 分类决策规则。...KNN算法原理 算法步骤 K近邻算法实施步骤如下: 根据给定距离度量,在训练集TT中寻找出与xx最近邻kk个点,涵盖这kk个点xx邻域记作Nk(x)Nk(x); 在Nk(x)Nk(x)中根据分类决策规则决定样本所属类别...K选择 K近邻算法对K选择非常敏感。K值越小意味着模型复杂度越高,从而容易产生过拟合;K值越大则意味着整体模型变得简单,学习近似近似误差会增大。 在实际应用中,一般采用一个比较小K值。...并采用交叉验证方法,选取一个最优K值。 距离度量 距离度量一般采用欧式距离。也可以根据需要采用LpLp距离或明氏距离。 分类决策规则 K近邻算法分类决策多采用多数表决方法进行。

    92890

    K- 近邻算法

    K-近邻算法实现&python中k-近邻算法使用&模型评估 概述 简单地说,k近邻算法采用测量不同特征值之间距离方法进行分类。...k-近邻算法 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。...输入没有标签新数据后,将新数据每个特征与样本集中数据对应特征进行比较,然后算法提取样本集中特征相似数据(最近邻分类标签。...一般来说,我们只选择样本数据集中前k个相似的数据,这就是k-近邻算法中k出处,通常k是不大于20整数。最后,选择k个相似数据中出现次数最多分类,作为新数据分类。...模型参数:算法过程中学习参数 显然,KNN算法中没有模型参数 寻找最佳超参数 sklearn_KNeighborsClassifier API class sklearn.neighbors.KNeighborsClassifier

    89710

    k-近邻算法

    k-近邻算法(kNN)采用测量不同特征值之间距离方法进行分类。 使用数据范围:数值型和标称型。 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。...k-近邻算法一般流程: 收集数据。 准备数据:格式化数据格式、归一化。 分析数据。 训练算法:不适用于k-近邻算法。 测试算法:计算错误率。 使用算法。...实施步骤: 对未知类别属性数据集中每个点依次执行以下操作: 计算已知类别数据集中点与当前点之间距离; 按照距离递增次序排序; 选取与当前点距离最小k个点; 确定前k个点所在类别的出现频率; 返回前...k个点出现频率最高类别作为当前点预测分类。

    54320

    k-近邻算法

    k-近邻算法定义 k-近邻(k-Nearest Neighbour,kNN)算法采用测量不同特征值之间距离方法进行分类。...该方法思路是:如果一个样本在特征空间中k个相似(即特征空间中最邻近)样本中大多数属于某一个类别,则该样本也属于这个类别。...用官方的话来说,所谓k近邻算法,即是给定一个训练数据集,对新输入实例,在训练数据集中找到与该实例邻近k个实例(也就是上面所说k个邻居), 这k个实例多数属于某个类,就把该输入实例分类到这个类中...确定前k个点所在类别的出现频率 (5) 返回前k个点出现频率最高类别作为当前点预测分类 k-近邻算法实现 下面根据以上算法流程实现kNN算法 Python预备知识 下面说说程序中用到一些Numpy...Python源码 classify0函数是k-近邻算法源码实现,file2matrix函数用于从文件转给你读取数据,然后交给classify0函数进行处理。

    74330

    KNN近邻算法 详解

    什么是 KNN近邻算法? 通常我们都知道这么一句话 “近朱者赤近墨者黑” , KNN算法就是这句话完美诠释了。...KNN近邻算法 实践 这里我们会使用到 sklearn 和 numpy 两个库, 当然就算你不熟悉也没关系, 这里主要就是为了直观感受一下 KNN 算法。...当然,真正要写好 KNN算法 肯定不是我们考虑这么简单, 但是主要思路是这样, 所以我们根据这个思路先来把简单 KNN 实现一下吧。 实现 有了上面的思路,我们直接来看代码吧!..., 其实这也是数学魅力, 就像一个排序...都能给你整出那么多幺儿子, KNN 调参 实践了,手写了, 不知道现在你对knn是不是有了一个比较深入了解, 嗯,只想说一句, 不愧是简单算法之一...前面我们说了,KNN算法是一个分类算法, 但事实上其同样可以用来处理回归问题, 思路也很简单, 找到相应邻居,然后根据邻居打分来求自己打分, 将分类问题就转换成了回归问题了。

    84720

    k-近邻算法

    《机器学习实战》一书介绍第一个算法是k-近邻算法。简单说,k-近邻算法采用测量不同特征值之间距离方法进行分类。...k-近邻算法实现上也比较简单,以分类任务为例,首先是准备训练样本,训练样本都存在标签,也就是我们知道样本集中每一数据与所属分类对应关系。...输入没有标签新数据后,将新数据每个特征与训练样本对应特征进行比较,然后算法提取样本集中特征相似数据(最近邻分类标签。一般来说,选择k个相似的数据,这就是k-近邻算法中k出处。...从前面的分析可以看出,k-近邻算法没有显式训练过程,在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理。这个算法存在两个关键点: k值如何选择。...当然这个算法也有许多优点:精度高、对异常值不敏感、无数据输入假定。 书中给出了一个使用k-近邻算法识别手写数字完整例子,其错误率为1.2%。这已经是很高精度了。

    71420

    K近邻算法KNN简述

    K近邻算法又称KNN,全称是K-Nearest Neighbors算法,它是数据挖掘和机器学习中常用学习算法,也是机器学习中最简单分类算法之一。...KNN使用范围很广泛,在样本量足够大前提条件之下它准确度非常高。 KNN是一种非参数懒惰学习算法。其目的是使用一个数据库,其中数据点被分成几个类来预测新样本点分类。...您根据兴趣,爱好和思维相似性决定您邻居朋友圈。这类似于KNN工作方式所谓K近邻,就是K个最近邻居意思。KNN算法既可以做分类,也可以做回归。 K是什么?...我们想要预测年龄和经验可用新候选人工资。 步骤1:为K选择一个值。K应该是一个奇数。 步骤2:找到每个训练数据新点距离。 步骤3:找到新数据点K个最近邻居。...K最近邻优点 简单算法因此易于解释预测 非参数化,因此不对基础数据模式做出假设 用于分类和回归 与其他机器学习算法相比,最近邻训练步骤要快得多 K最近邻缺点 KNN在计算上是昂贵,因为它在预测阶段搜索最近邻新点

    1.3K40

    分类算法-K-近邻算法

    [img202108130815581.jpg] 目标 说明K-近邻算法距离公式 说明K-近邻算法超参数K值以及取值问题 说明K-近邻算法优缺点 应用KNeighborsClassifier实现分类...了解分类算法评估标准准确率 应用:Facebook签到位置预测 K-近邻算法(KNN) 定义 如果一个样本在特征空间中k个相似(即特征空间中最邻近)样本中大多数属于某一个类别,则该样本也属于这个类别...我们可以利用K近邻算法思想 [img202108130828409.png] 问题 如果取最近电影数量不一样?会是什么结果?...k 值取值过大,样本不均衡影响 k 值取值过小,容易受到异常点影响 结合前面的约会对象数据,分析k-近邻算法需要做怎么样处理 无量纲化处理 推荐 标准还 K-近邻算法数据特征工程处理...结合前面的约会对象数据,分析K-近邻算法需要做什么样处理 K-近邻算法API sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm

    69630

    机器学习常用算法-k近邻算法

    k-近邻算法是针对未标记样本类别,由距离其最近k个邻居投票决定。...-近邻算法。...后面我们会介绍如何提高该算法准确率。 4.特征可视化和分析 有时候我们想通过将相关一个或者多个特征选择出来进行可视化分析,那么如何选择相关特征呢?...可以看到数据分布和重叠性很大,所以选择k-近邻算法无法达到一个很好预测准确性。 这里相关特征选择主要采用了统计学上相关性检验,比如:卡方检验、t检验。...总结 通过一个简单例子对机器学习常用算法-k近邻算法有了一个整体上了解。下面我们介绍一下另外一个常用算法:线性回归。 参考 1.

    87850
    领券