首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    分治算法

    在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

    01

    《算法图解》note 9 动态规划1.动态规划定义2.与分治法及贪婪算法的区别3.动态规划的后续学习

    这是《算法图解》的第九篇读书笔记,主要内容是动态规划的简介。 1.动态规划定义 动态规划指的是在约束条件下,将问题划分为若干子问题并对其求出最优解,同时将子问题的答案存储起来,以减少重复计算相同子问题的次数,最终求出问题最优解的算法思想。 2.与分治法及贪婪算法的区别 贪婪算法是自上而下地逐步求解局部最优解,不依赖于子问题。 分治法实施的前提是子问题相互独立,相互独立的子问题避免分治法重复计算相同的子问题。 而分治法则能解决子问题不独立、局部最优解的求解依赖于子问题的问题。 3.动态规划的后续学习 由于

    05

    《算法图解》NOTE 4 快速排序法1.递归与分治法2.快速排序法的实现3.快速排序法的时间复杂度(用渐近表示法表示)

    这是《算法图解》的第四篇读书笔记,主要涉及快速排序法。 1.递归与分治法 快速排序法(quick sort)之所以有这个名称,源于其排序速度,相较于其他排序方式来说,较快。而其高排序效率,主要源于其使用了分治法(divide and conquer)的思路。 所谓分治法,即分而治之,将一个问题划分为几个子问题,而后解决子问题。当然,子问题可以再分解为几个子问题,直到子问题不能再划分时,解决不能再划分的子问题。若有需要,可以将子问题的答案合并,作为原问题的答案。请注意,解决问题的方法一直保持不变。 为什么

    06

    算法导论第四章分治策略实例解析(一)

    一、第三章简单回顾   中间略过了第三章, 第三章主要是介绍如何从数学层面上科学地定义算法复杂度,以致于能够以一套公有的标准来分析算法。其中,我认为只要记住三个符号就可以了,其他的就看个人情况,除非你需要对一个算法剖根问底,不然还真用不到,我们只需有个印象,知道这玩意是用来分析算法性能的。三个量分别是:确定一个函数渐近上界的Ο符号,渐近下届Ω符号,以及渐近紧确界Θ符号,这是在分析一个算法的界限时常用的分析方法,具体的就详看书本了,对于我们更多关注上层算法的表达来说,这些显得不是那么重要,我的理解是Ο可以简

    010

    一个数组中找最大值和最小值

    这个不是lintcode里的题目,但是感觉很经典,放在这里。 给定一个数组,在这个数组中找到最大值和最小值。 最近在看一点算法书,看到分治法经典的金块问题,实质就是在一个数组中找到最大值和最小值的问题。 我们用分治法来做,先把数据都分成两两一组,如果是奇数个数据就剩余一个一组。 如果是偶数个数据,就是两两一组,第一组比较大小,分别设置为max和min,第二组来了自己本身内部比较大小,用大的和max进行比较,决定是否更新max,小的同样处理,以此类推。 如果是奇数个数据,就把min和max都设为单个的那个数据,其他的类似上面处理。 书上说可以证明,这个是在数组中(乱序)找最大值和最小值的算法之中,比较次数最少的算法。 瞄了一眼书上的写法,还是很简单的,一遍过。

    01

    经典算法学习之分治法(以排列、组合程序为例)

    分治法的思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归的求解这些子问题,然后再合并这些子问题的解来建立原问题的解。 分治法在每层递归是遵循的三个步骤: (1)分解原问题为若干个子问题,这些子问题是原问题的规模较小的实例。 (2)解决这些子问题,队规的求解各个子问题,当子问题规模足够小的时候,直接求解。 (3)合并这些子问题的解构成原问题的解。 显然归并排序是一个非常经典规矩的分治法的例子,鉴于之前已经写过一篇关于归并排序的博文,这里不在使用归并排序作为例子。 注意分治法的每一层递归中的第一步分

    07
    领券