问题表述:给定一幅图(n个结点,m条边),每一条边有一个容量,现在需要将一些物品从结点s(称为源点)运送到结点t(称为汇点),可以从其他结点中转,求最大的运送量。
最大流算法主要分为两大类,一类为增广路算法,一类为预流推进算法。最大流算法解决的是在有向网路图 中计算从源点 到汇点 的最大流量问题,以及最小割容量问题。
https://www.cnblogs.com/ZJUT-jiangnan/p/3632525.html
数据结构与算法 基本算法思想 动态规划 贪心算法 回溯算法 分治算法 枚举算法 算法基础 时间复杂度 空间复杂度 最大复杂度 平均复杂度 基础数据结构 数组 动态数组 树状数组 矩阵 栈与队列 栈 队列 阻塞队列 并发队列 双端队列 优先队列 堆 多级反馈队列 线性表 顺序表 链表 单链表 双向链表 循环链表 双向循环链表 跳跃表 并查集 哈希表(散列表) 散列函数 碰撞解决办法: 开放地址法 链地址法 再次哈希法 建立公共溢出区 布隆过滤器 位图 动态扩容 树 二叉树: 各种遍历,递归与非递归 二
P3385 【模板】负环 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
在软件开发领域,任务指派和数据关联是一种常见业务需求,比如买卖订单的匹配,共享出行的人车匹配,及自动驾驶领域中目标追踪。
本文为MIT Senseable City Laboratory 2018年5月23号发表于Nature杂志Addressing the minimum fleet problem in on-demand urban mobility论文的学习笔记。
二分图是这样的一个图:其顶点可以划分为两个集合 X 和 Y , 任何一条边所关联的两个顶点中,恰好有一个属于集合 X , 另一个属于 Y。同一个集合内的顶点必没有边相连。如果一个图是二分图,那么它一定没有 奇环 (边为奇数的环路),如果一个图没有 奇环 , 那么它就一定是 二分图。
网络流看了两天,终于有了一点眉目,也拿模版A了道题目,通过对于模版代码的调试也真正了解了ek算法的用途了。 想好好写下总结都不让人顺心,写到一半网站死了,又得重新写。。 不说废话了,直接正题 首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和 EK算法的核心 反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。 在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。 而找
匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。
网络最大流问题属于算法 里面较难的问题,因为牵涉的概念比较多,这一篇可能需要你花比较多的时间去理解,除了看这个,最好能多参考别的书籍或者文章进行比较学习,不然可能容易产生理解的偏差。
生活或工作中,我们常常碰到分配问题。比如公司有n个任务,由n个工人来做,每个工人不同程度地擅长一个或几个任务。如果你是管理层,如何布置任务最大程度地发挥大家所长使公司效率更高?又如,某相亲舞会,有n个俊男和n个靓女参加,每个靓女对不同气质和形象的俊男有不同好感度。如果你是主持人,如何分配跳舞伴侣使总体好感度最高?再如,奥运赛场上,乒乓球团体赛要求双方各出n名运动员一一角逐,取胜多的一方最终获胜。作为教练,你了解自己队员的实力以及战胜对方队员的把握,在已知对方出场顺序情况下,如何给出一个队员出场顺序使得最终获胜把握最大?
输入数据的第一行是三个整数K , M , N,分别表示可能的组合数目,女生的人数,男生的人数。0<K<=1000 1<=N 和M<=500.接下来的K行,每行有两个数,分别表示女生Ai愿意和男生Bj做partner。最后一个0结束输入。
在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。
如图所示,其中的三条边即该图的一个匹配。所以,匹配的两个重点:1. 匹配是边的集合;2. 在该集合中,任意两条边不能有共同的顶点。 那么,我们自然而然就会有一个想法,一个图会有多少匹配?有没有最大的匹配(即边最多的匹配呢)?
二分图的定义已经说明,图中存在二个独立的子集,为了区分这两个子集,可以给其中一个子集中的顶点染上红色,另一个子集中的顶点染上蓝色。具体是什么颜色并不重要,只要能区分就可以。
—“运筹教科书到底能给你啥?” —“算法和实现离教科书有多远?” —“问题解决能力到底从哪来?” 今天刚起床就接到了BOSS的 提·问·三·连 小编表示 收到直击内心的提问之后,小编决定 翻开教科书、打开编译器 在今天的运筹学·第二弹——最大流问题篇中 和大家一起寻找问题的答案! 运筹学·教学笔记 第二弹 —— 最大流问题篇 奉上!熟悉的攻略三连(问题、方法、实现)、熟悉的实践演示、熟悉的代码算例...手把手带你走上 运筹学·大佬 的征程! * 内容提要: *什么是最大流问题 *求解最大流问题的算法 *
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过不错的文章给大家。大家也可以留言区补充。
在上一篇文章当中,我们主要学习了最小生成树的Kruskal算法。今天我们来学习一下Prim算法,来从另一个角度来理解一下这个问题。
不得不说现在算法岗的热门程度已经到了一个空前绝后的程度,所以这一岗位的就业形势也是非常严峻。
以下场景太过真实,但都是虚构,为了讲清楚理论的过程。如有雷同,纯属我瞎编,还望勿对号入座。
本篇博客主要讲解什么是二分图,怎样判断二分图,匈牙利算法和HK(Hopcroft-Karp)算法,以及二分图多重匹配。
二分图:又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边所关联的两个顶点i和j分别属于这两个不同的顶点集(i∈A, j∈B),则称图G为一个二分图。
程序中Dinic()循坏调用BFS()不断构建层次网络,每次构建好调用则循环DFS()增广,因此步骤2,3的一次循环便是一个阶段,每个阶段中都是根据残留网络建立层次网络然后进行增广,直到找不到增广路为止。在程序实现的时候,并不需要真正“构造”层次网络,只需要对每个顶点标记层次,增广的时候,判断边是否满足layer(v) = layer(u)+1这一约束条件即可。
题意:有f个草场,每一个草场当前有一定数目的牛在吃草,下雨时它能够让一定数量的牛在这里避雨,f个草场间有m条路连接,每头牛通过一条路从一点到还有一点有一定的时间花费,如今要下雨了,农场主发出警报牛就会马上去避雨。
网络流的相关定义: 源点:有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点。 汇点:另一个点也很特殊,只进不出,叫做汇点。 容量和流量:每条有向边上有两个量,容量和流量,从i到j的容量通常用c[i,j]表示,流量则通常是f[i,j]. 通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有“进入”他们的流量和等于所有从他本身“出去”的流量。 最大
雷神之锤3是一款九十年代非常经典的游戏,内容画面都相当不错,作者是大名鼎鼎的约翰卡马克。由于当时游戏背景原因,如果想要高效运行游戏优化必须做的非常好,否则普通人的配置性能根本不够用,在这个背景下就诞生了“快速开平方取倒数的算法”。 在早前自雷神之锤3的源码公开后,卡马克大神的代码“一战封神”,令人“匪夷所思”的 0x5f375a86 ,引领了一代传奇,源码如下:
这个算法有点难度,一般比较标准的描述网页上也有相关的描述,我在这里就简单的用十分通俗的语言给大家入个门
匈牙利算法解决的问题概述:有 n 项不同的任务,需要 n 个工人分别完成其中的 1 项,每个人完成任务的成本不一样。如何分配任务使得花费成本最少?
Problem Description RPG girls今天和大家一起去游乐场玩,终于可以坐上梦寐以求的过山车了。可是,过山车的每一排只有两个座位,而且还有条不成文的规矩,就是每个女生必须找个个男生做partner和她同坐。但是,每个女孩都有各自的想法,举个例子把,Rabbit只愿意和XHD或PQK做partner,Grass只愿意和linle或LL做partner,PrincessSnow愿意和水域浪子或伪酷儿做partner。考虑到经费问题,boss刘决定只让找到partner的人去坐过山车,其他的人,嘿嘿,就站在下面看着吧。聪明的Acmer,你可以帮忙算算最多有多少对组合可以坐上过山车吗?
二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。简而言之,就是顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属于这两个互不相交的子集,两个子集内的顶点不相邻。(简单说就是把一个图的顶点分成两个集合,且集合内的点不邻接)
网络流(network-flows)是一种类比水流的解决问题方法,与线性规划密切相关。网络流的理论和应用在不断发展。而我们今天要讲的就是网络流里的一种常见问题——最大流问题。
将所有数字看作二分图的左右两部分节点,如果两个节点的和是一个素数,则在它们之间连接一条边。
前置知识 网络最大流入门 前言 Dinic在信息学奥赛中是一种最常用的求网络最大流的算法。 它凭借着思路直观,代码难度小,性能优越等优势,深受广大oier青睐 思想 Dinic算法属于增广路算法。 它的核心思想是:对于每一个点,对其所连的边进行增广,在增广的时候,每次增广“极大流” 这里有别于EK算法,EK算法是从边入手,而Dinic算法是从点入手 在增广的时候,对于一个点连出去的边都尝试进行增广,即多路增广 Dinic算法还引入了分层图这一概念,即对于$i$号节点,用dis(i)表示它到源点的距离,并规定
前言 网络最大流是网络流中最基础也是最重要的部分,后边的许多模型也都是由最大流问题引申而来的 最大流 在研究这个问题之前,让我们先来学习一下前置知识 可行流 设f(u,v)表示边(u,v)的当前容量上限 设c(u,v)表示边(u,v)的最大容量上限 如果网络流图中的流量满足 源点S:流出量=流量总量 汇点T:流入量=流量总量 任意边(u,v):0<=f(u,v)<=c(u,v) 则称该流为一个可行流 增广 增广:即增加一条路径上的流量 增加一条路径的流量,即减少这条路径的当前流量上限,即f(u,v)的值 增
前言 EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题。 但是受到时间复杂度的限制,这种算法常常有TLE的风险 思想 还记得我们在介绍最大流的时候提到的求解思路么? 对一张网络流图,每次找出它的最小的残量(能增广的量),对其进行增广。 没错,EK算法就是利用这种思想来解决问题的 实现 EK算法在实现时,需要对整张图遍历一边。 那我们如何进行遍历呢?BFS还是DFS? 因为DFS的搜索顺序的原因,所以某些毒瘤出题人会构造数据卡你,具体怎么卡应该比较简单,不
如果一个无向图的的顶点可以分为两个互不相交的子集A和B,那么它就是二分图。也就是说,A、B内部不存在连边,所有连边都一头连着A中的顶点,另一头连着B中的顶点。
EK (Edmond-Karp) 算法,说白了就是求最大流/费用流之类的问题的算法。
有n个宝藏在一片三维的海中,每秒可以用钩子捞起一个,每个宝藏有一个垂直向下落的速度,问如何拿使得钩子伸出的距离的平方最小。
带花树就是说一个非二分图,图中带有奇环的图,我们不能在奇环中找增广路,因为会陷入死循环,我们可以将带花树的花(奇环)部分缩成点处理,剩下的图就是一个无奇环的图。我们再找增广路,而奇环中的的点我们可以随意分配,但是说起来简单,但是实现很难。经过前人的探索,还有这篇《Efficient Algorithms for Finding Maximal Matching in Graphs》论文,呃,然后后人就写出来模板,这就是一个模板题。
二分图也叫二部图,设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。如下图所有的顶点可以分成A,B两个集合,而A集合与B集合中的点与自己的阵营的点是没有连线的(A集合的点只与B集合的点有边相连),则称这个为一个二分图.(离散数学中的内容)
n女生选择不吵架,他甚至男孩边(他的朋友也算。并为您收集过程)。2二分图,一些副作用,有几个追求完美搭配(每场比赛没有重复的每一个点的比赛)
刷了一天最大流的题,都快刷晕了,, 简单总结几个模型吧。 大部分内容来自学姐的PPT 拆点 一个非常有用的思想 限流 将对点的限制转化为对边的限制 点的合并 这个还没看到 最小割 最小割==最大流 一条增广路中,必有一条边满流,满流的流量即为这条增广路的流量,那么删除满流的这条边即可阻断一条增广路。删去一些边使源汇不连通即阻断所有的增广路,代价之和即为最大流。 最大流=最小割 你能想到什么? 大与小的转换 留下最多与拿走最少的转换 最大收益与最小损失的转换 选最优与不选最差的转换 什么时候转换?
题目链接:PAT「1003 Universal Travel Sites (35分)」 。
这个问题,一个非常经典的算法,是单源最短路径算法(一个顶点到一个顶点)。最出名的莫过于Dijkstra算法了。
之前的一个学习一直在看图像分割的部分内容,基于交互的图像分割基本都是用图割的算法,全自动的图割算法也有最小生成树的改进算法。
现在的公共交通越来越方便,很多城市都有地铁,日常使用的地图App都提供了地铁线路换乘方案的功能,只要输入起点和重点,App就能给出你换乘的方案,可是这个功能背后的算法又是怎么样的呢。这篇文章将会告诉你。
领取专属 10元无门槛券
手把手带您无忧上云