首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图论--网络流最大流问题

    反向弧的作用主要是用于寻找增广。 反向弧的意义:反向弧的作用是起到有更优决策的时候会使当前选择的弧会自动放弃。...这样的话,求解最大流就只需要在残余网络中寻找增广,直到不存在可以从s流向t 的增广,此时即为最大流。求解最大流问题的高效算法有 dinic,sap和isap。...我们今天讲最基础的FF算法与EK算法,他俩的区别在于一个是DFS找增广,一个是BFS找增广。后者高效一点。...Edmonds-Karp算法:以广度优先的增广算法,又称为最短增广算法(Shortest Augument Panth, SAP)。 最短增广算法步骤:采用队列q 来存放已访问未检查的结点。...如果队列不空,继续下一步,否则算法结束,找不到可增广。当前的实流网络就是最大流网络,返回最大流值maxflow。 队头元素new 出队,在残余网络中检查new 的所有邻接结点i。

    1.3K40

    再看最短算法 1 —— 单源最短

    学了多年的算法最短路问题相当之常见———— 好久没写过最短路的问题了,直到昨天闲的无聊来了一题——BZOJ3402(HansBug:额才发现我弱到只能刷水的地步了TT) 一看这不是明显的单源最短路么呵呵...+(估计还不止)和192ms究竟是怎样的差距啊QAQ,本人虽然早都听说过spfa的强大性,但是未曾想过差距会如此可怕,于是HansBug‘s Labo Online—— 准备:1.dijkstra单源最短路径模板...0:writeln(1,' ---> ',i,' : ','Unavailable'); 66 end; 67 readln; 68 end. 2.spfa单源最短路径模板...> ',i,' : ',c[i]); 54 end; 55 readln; 56 end. 3.bat对拍小程序 (PS:由于Bellman-Ford算法具有超高的时空浪费量...,还有Floyd一般不用于单源最短路,所以只准备这些) 还有:这次采用的对拍模式如下——模拟一般OI赛制上的10组数据,30%数据满足规模为N<=10000 M<=100000;60%的数据满足规模为N

    2K60

    算法|Dijkstra最短路径算法

    01 — 单源最短路径 首先解释什么是单源最短路径,所谓单源最短路径就是指定一个出发顶点,计算从该源点出发到其他所有顶点的最短路径。...如下图所示,如果源点设为A,那么单源最短路径问题,就是求解从A到B,从A到C,从A到D,从A到E,从A到F的最短路径。 ?...02 — Dijkstra算法求单源最短路径 这个算法首先设置了两个集合,S集合和V集合。S集合初始只有源顶点即顶点A,V集合初始为除了源顶点以外的其他所有顶点,如下图所示: ?...注意,根据这种讨论,实际上我们考虑了两种从A到B的路径:A->B,A->C->B,但是到达B的路径不只这两条,因为经过D也可以到B,如果这些劲中出现比距离5还小的路径的话,那么Dijkstra算法是不是有漏洞呢...以上分析就是Dijkstra算法的基本思想,直到集合V的元素个数为0为止,最终的dist字典如下: ? 03 — Dijkstra算法总结 算法的基本思路: 1. 初始化两个集合,S集合和V集合。

    6.3K50

    最短路径-Floyd算法

    --more--> > Floyd算法(Floyd-Warshall algorithm)又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。...-来自百度百科 前一篇文章:[第六章 图-Dijkstra算法](https://study.sqdxwz.com/index.php/archives/13/) 我们已经学习过了单源最短路径求解方法...,这次我们来学习所有顶点间(任意两点间)的最短路径求解方法-Floyd算法。...对于求解任意两点最短路径的方式,我们也可以采用简单暴力将Dijkstra算法循环n遍(假设存在有n个顶点),也是可以求解任意两点间距离的,但是人类社会之所以会进步,难道仅仅是会使用筷子?...还是好好学习更先进的算法-Floyd算法吧! **注:**采用此暴力的时间复杂度为:O(n^3)。

    2.9K10

    最短路径-Dijkstra算法

    Dijkstra算法,又称"迪杰斯特拉算法",是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。...算法解析 1: 设置2个顶点集合S,T  S 存储已经找到的最短路径点的距离  T 存储未处理过的顶点 2: 先把起点A存储到T.准备处理 3: 获取到T的起点A,首先起点A到起点A的距离是0,直接存储到...S:A=>{length:0,route:A}, 4: 然后通过起点,获取起点周围的几个点和距离,例如B距离1,C距离5,D距离3,存储到T 5: 起点到周围的点都是当前的最短路径,直接存储到S:B=>...: 继续获取到E,C周围的点.存储到T 9: 如果已经获取到了终点(可以不需要终点,则之前遍历全部点),则不再获取终点周围的点 重复7,8步骤,直到T不存在数据 在这个过程中,可以保证起点到所有点都是最短路径...算法图解过程 例如 10x10 宫格图中: ?

    2.8K40

    算法

    Dir.DownLeft; } break; case Dir.Up: 2.跳点 跳点需要满足下面三个条件之一: a.节点是寻的起点...节点的水平或垂直方向上有满足条件a,b的点 举个例子: 黄色节点的父节点是在斜方向,其对应分解成向上和向右两个方向,因为在右方向发现一个蓝色跳点,因此黄色节点也应被判断为跳点 (黄色点为起点,蓝色点为跳点) * * * 寻流程...就用进一步的斜点,在直线搜索+斜向搜索,直到所有方向都完成 5.从openlist权值最低的节点进行搜索,直到openlist为空或者找到重点 * * * _和A 相比,优缺点:_* 1.使用JPS算法比...,内存占用更小,因为openlist少了很多节点(最差的情况和A 一样,最差的是每个障碍都不连续,中间都有缝隙,这样所有地方都是跳点了) 2.只适用于网格节点类型,不支持Navmesh或者路径点寻方式

    68020

    最短路径-Dijkstra算法

    迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。...-来自百度百科 一.最短路径问题的求解 1、单源最短路径用Dijkstra算法; 2、所有顶点间的最短路径用Floyd算法。...Dijikstra算法所求解的问题是:大概有这样一个有权图,Dijkstra算法可以计算任意节点到其他节点的最短路径。 ?...案例图 1.算法思路 1.指定一个节点,例如我们要计算 'A' 到其他节点的最短路径; 2.引入两个集合(S、U),S集合包含已求出的最短路径的点(以及相应的最短长度),U集合包含未求出最短路径的点(以及...其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。

    7K31

    最短路径:Dijkstra算法(求单源最短路径)Floyd算法(求各顶点之间最短路径)

    最短路径: 在一个带权图中,顶点V0到图中任意一个顶点Vi的一条路径所经过边上的权值之和,定义为该路径的带权路径长度,把带权路径最短的那条路径称为最短路径。...DiskStra算法: 求单源最短路径,即求一个顶点到任意顶点的最短路径,其时间复杂度为O(V*V) 如图所示:求顶点0到各顶点之间的最短路径 代码实现: #include #include...printf("∞ "); }else{ printf("%d ",g.arcs[i][j]); } } printf("\n"); } } //Dijkstra算法...AMGraph g; createGraph(g); int dist[g.vexnum]; int path[g.vexnum]; Dijkstra(g,dist,path,0); } Floyd算法...printf("∞ "); }else{ printf("%d ",g.arcs[i][j]); } } printf("\n"); } } //Floyd算法

    2.2K20

    最短路径(Floyd算法,弗洛伊德算法,多源最短路径)

    算法思想:一开始各顶点之间的最短路径,就是邻接矩阵值,每一次加入一个顶点,然后判断该顶点加入后,其余起点通过该顶点到达其余顶点能否得到比之前更短的最短路径,如果找到了就进行最短路径和权值和的更新 ?...算法伪代码 ?...= 0; i < arcNum/2; i++) { cin >> vi >> vj >> k; arc[vi][vj] = k; arc[vj][vi] = k; } } //佛洛伊德算法...:最短路径P数组 最短路径长度d数组 void Shorttestpath_Floyd(Graph G, int(*p)[Max], int(*d)[Max]) { //初始化最短路径数组p和最短路径长度数组...d[i][j] = G.arc[i][j]; //初始化时:0---1的最短路径就是0---1,0---2的最短路径就是0----2 p[i][j]=j; } } //外层循环

    2.1K20
    领券