周五给学生讲课的时候,学生听得有点蒙,故写下这篇抢救一下。为了节省敲键盘的次数,下面部分内容来自维基百科。
图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波。我们知道微分运算是求信号的变化率,具有加强高频分量的作用。在空域运算中来说,对图像的锐化就是计算微分。对于数字图像的离散信号,微分运算就变成计算差分或梯度。图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度。拉普拉斯算子(二阶差分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。
Linux 内核包含4个IO调度器,分别是 Noop IO scheduler、Anticipatory IO scheduler、Deadline IO scheduler 与 CFQ IO scheduler。
BP(Back Propagation)神经网络是1986年由以Rumelhart和McCelland为首的科学家小组提出的,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存储大量的输入/输出因施工和关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
最近,我们的业务系统引入了Guava的RateLimiter限流组件,它是基于令牌桶算法实现的,而令牌桶是非常经典的限流算法。本文将跟大家一起学习几种经典的限流算法。
召回率(Recall rate) : TP / (TP+FN);
通常磁盘的读写影响是由磁头到柱面移动造成了延迟,解决这种延迟内核主要采用两种策略:缓存和IO调度算法来进行弥补。
最近一直在完善一个视频人脸聚类的算法,开始时一直使用DBSCAN算法,不过视频测试的时候,发现该算法对参数的依赖太过严重,有些视频的人脸阀值很难去界定。
地址 | https://www.zhihu.com/question/22334626/answer/103835591
限流算法经典的一般有四种:计数器(固定窗口)算法、滑动窗口算法、漏桶算法、令牌桶算法。
一般的边缘检测算法用一个阀值来滤除噪声或颜色变化引起的小的梯度值,而保留大的梯度值。Canny算法应用双阀值,即一个高阀值和一个低阀值来区分边缘像素。如果边缘像素点梯度值大于高阀值,则被认为是强边缘点。如果边缘梯度值小于高阀值,大于低阀值,则标记为弱边缘点。小于低阀值的点则被抑制掉。
1.对象的年龄超过一定阀值,-XX:MaxTenuringThreshold 可以指定该阀值。
银行卡扫描识别 Ctrip Tech 背景介绍: 图像识别是人工智能的一个重要领域 。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。图像识别经历了三个阶段的发展:文字识别,数字图像处理与识别,物体识别。文字识别的研究是从1950年开始的,一般是识别字母,数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。 随着智能手机兴起,手机支付的行为越来越普及。但是用户在手机上输入银行卡卡号时,速度很慢,需要仔细的校对,用户体验很差。美国的PAYPAL 、苹果公司,中国的阿里公司和腾讯都在
从本篇文章开始,作者正式开始研究Python深度学习、神经网络及人工智能相关知识。第一篇文章主要讲解神经网络基础概念,同时讲解Theano库的安装过程及基础用法,主要结合 "莫烦大神" 的视频介绍,后面随着深入会讲解具体的项目及应用。基础性文章,希望对您有所帮助,也建议大家一步步跟着学习,同时文章中存在错误或不足之处,还请海涵~
根据《熔断机制》可以知道,熔断有三种状态,[熔断关闭],[半熔断],[熔断开启]三种状态,如果系统压力过大,一个服务就会在三种状态来回切换
例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有 0.5%的实例是恶性肿瘤。假设我们编写一个非学习而来的算法,在所有情况下都预测肿瘤是良性的,那么误差只有 0.5%。然而我们通过训练而得到的神经网络算法却有 1%的误差。这时,误差的大小是不能视为评判算法效果的依据的
http://www.cnblogs.com/fydeblog/p/7392408.html
如果之前了解过信号处理,就会知道最直接的方法是计算图片的快速傅里叶变换,然后查看高低频分布。如果图片有少量的高频成分,那么该图片就可以被认为是模糊的。然而,区分高频量多少的具体阈值却是十分困难的,不恰当的阈值将会导致极差的结果。
在通常情况下,图片是否清晰是个感性认识,同一个图,有可能你觉得还过得去,而别人会觉得不清晰,缺乏一个统一的标准。然而有一些算法可以去量化图片的清晰度,做到有章可循。
作为一名电子元器件采购,不仅需要灵活的业务能力,也需要掌握电子元器件的分类、型号识别、用途等专业基础知识,才能为企业提供更专业的采购建议。采购是门学问,包含了方方面面,下面我们就这些问题来说道说道:
上两篇介绍了关于欧几里德分割,条件分割,最小分割法等等还有之前就有用RANSAC法的分割方法,这一篇是关于区域生成的分割法,
本文讲解 HashMap JDK 8 的原理,结合源码,只分析 put ,get ,resize 方法的流程。
垃圾回收(Garbage Collection,简称GC)是编程语言中自动的内存管理机制,垃圾回收,垃圾指的是不再需要的内存块,如果不及时清理就没有办法再利用。
提及腾讯的海量监控的挑战,将近 20 套监控系统,指标有将近 300 多个,监控的实例超过 900 万。
1.Sun HotSpot VM,是JDK和Open JDK中自带的虚拟机,也是目前使用范围最广的Java虚拟机。 2.JVM内存分布 程序计数器:是一块较小的内存空间,可以看作是当前线程所执行的字节
其实将彩色图像转换成黑白图像原理非常的简单,实现起来也很容易。简单的说就是黑白图像的每个像素在RBG颜色中都具有相对应的值。用代码循环把图像中每一位RGB颜色转换成对应的黑白颜色就可以。 一、彩色转换黑白 C# Code var originalbmp = new Bitmap(Bitmap.FromFile(OFD.FileName)); // Load the image var newbmp = new Bitmap(Bitmap.FromFile(OFD.FileName)); // New ima
Oracle 的11g版本正式发布到今天已经10年有余,最新版本也已经到了20c,但是Direct Path Read(直接路径读)导致性能问题的案例仍时有发生,很多12c的用户还是经常遇到这个问题,所以有必要把这个事情再跟大家讲一遍,通过2个典型案例加深理解。
select ...from table where exist (子查询);
这一步直接通过 HDL 中乘法器的描述来实现, 综合时会自动布线为片内乘法器,如下:
模糊均值聚类(FCM)是用隶属度确定每个数据点属于某个聚类的程度的一种聚类算法。1973年,Bezdek提出了该算法,作为早期硬均值聚类(HCM)方法的一种改进。FCM把 n 个向量 xi(i=1,2,…,n)分为 c 个模糊组,并求每组的聚类中心,使得非相似性指标的价值函数达到最小。FCM 使得每个给定数据点用值在 0,1 间的隶属度来确定其属于各个组的程度。与引入模糊划分相适应,隶属矩阵 U 允许有取值在 0,1 间的元素。不过,加上归一化规定,一个数据集的隶属度的和总等于 1:
如前一章提到,监控有赖于运维各专业条线协同完善,通过将监控体系进行分层、分类,各专业条线再去有重点的丰富监控指标。
LTR(Learning To Rank)学习排序是一种监督学习(SupervisedLearning)的排序方法,现已经广泛应用于信息索引,内容推荐,自然语言处理等多个领域。以推荐系统为例,推荐一般使用多个子策略,但哪个策略更好?每个策略选出多少候选集?每个候选集呈现的顺序如何排序?这些问题只能根据经验进行选择,随着策略越来越多,上述问题对推荐效果的影响会越来越大。于是乎,人们很自然的想到了用机器学习(Machine Learning)了解决上述问题,至此LTR就出世和大家见面了。发展到现在,LTR已经形成较为成熟的理论基础,并且可以解决数据稀疏、过拟合等多种问题,在实际应用中取得较好的效果。 做过LTR的人都知道AUC是机器学习中非常重要的评估指标,AUC的提升会带来线上点击率的提升,其值越高越好,最大值为1。那么AUC到底是个什么东东呢?为什么AUC的提升就一定会带来点击率的提升?本文就带大家一起了解下AUC的概念及其与线上点击率的关联。
topk排序是指从N个数据中找出最大/小的前K个数据,并以升/降序排列,本文讨论的topk与这个定义稍有差别(所以叫类topk算法):
HashMap是日常开发中经常会用到的一种数据结构,在介绍HashMap的时候会涉及到很多术语,比如时间复杂度O、散列(也叫哈希)、散列算法等,这些在大学课程里都有教过,但是由于某种不可抗力又还给老师了,在深入学习HashMap之前先了解HashMap设计的思路以及以及一些重要概念,在后续分析源码的时候就能够有比较清晰的认识。
摘要: 什么是多级缓存 所谓多级缓存,即在整个系统架构的不同系统层级进行数据缓存,以提升访问效率,这也是应用最广的方案之一。我们应用的整体架构如图1所示: 图1 多级缓存方案 整体流程如上图所示: 1)首先接入Nginx将请求负载均衡到应用Nginx,此处常用的负载均衡算法是轮询或者一致性哈希,轮询可以使服务器的请求更加均衡,而一致性哈希可以提升应用Nginx的缓存命中率,相对于轮询,一致性哈希会存在单机热点问题,一种解决办法是热点直接推送到接入层Nginx,一种办法是设置一个阀值,当超过阀值,改为轮询算法。
首先第一部分也是莫烦老师的在线学习笔记,个人感觉挺好的基础知识,推荐给大家学习。对机器学习进行分类,包括: 1.监督学习:通过数据和标签进行学习,比如从海量图片中学习模型来判断是狗还是猫,包括分类、回归、神经网络等算法;
kaggle profile:https://www.kaggle.com/senkin13
关于神经网络与深度学习算法,以下SMDD会从最基础的概念讲起来,不会有复杂的公式和难以理解的东西 在了解基本之前我们先来看看几个基本的概念,虽说是高数基础,但很好理解 导数:一个平滑,连续的函数在某处的切线的斜率 如果说函数在有定义的某点上可以切,我们就说在这点可导 e:皮尔纳常数,什么是皮尔纳常数?这个不需要过多了解,你就把他当做派一样对待 定义一个函数exp(x)=e^x *以上基本数学常识会在后面模型优化的文章内用到*
目前小米已经在线上开始大规模使用G1垃圾回收算法,在论坛中也看到一些朋友在讨论使用G1碰到的各种各样的问题,这里打算写一篇文章记录下调G1的一些经验。 先传送门一下,之前在HBaseConAsia2017分享过一个G1GC调优的PPT:
AbstractMap是Map接口的抽象实现类,通过抽象方法keySet()实现了get(key),remove(key),containsKey(key),containsValue(value)的基本算法,遍历加equals。
在实际项目中,曾经遭遇过线上5W+QPS的峰值,也在压测状态下经历过10W+QPS的大流量请求,本篇博客的话题主要就是自己对高并发流量控制的一点思考。
叶子节点:存放决策结果 非叶子节点:特征属性,及其对应输出,按照输出选择分支 决策过程:从根节点出发,根据数据的各个属性,计算结果,选择对应的输出分支,直到到达叶子节点,得到结果
答:微信金额是拆的时候实时算出来,不是预先分配的,采用的是纯内存计算,不需要预算空间存储。。
从本篇文章开始,作者正式开始讲解Python深度学习、神经网络及人工智能相关知识,希望您喜欢。
看《Hadoop:权威指南》的时候收集了书上写的一些需要优化的参数,记录了一下子,给大家分享一下吧。 1.mapred.task.timeout 任务超时时间,默认是10分钟 2.mapred.map.max.attempts mapred.reduce.max.attempts 默认任务失败重复次数为4 3.mapred.max.map.failures.percent mapred.reduce.map.failures.percent 不触发错误的失败的最
最近,我的一位朋友在找工作,已经拿到了美团、快手等公司的Offer,准备选择其中一家入职了。
领取专属 10元无门槛券
手把手带您无忧上云