在图论中,最小生成树是一个重要的概念,它是一个连通图的子图,包含图中的所有节点,并且边的权重之和最小。 Prim 算法和 Kruskal 算法是两种常用的最小生成树算法。本篇博客将重点介绍这两种算法的原理、应用场景以及使用 Python 实现,并通过实例演示每一行代码的运行过程。
像图论算法这种高级算法虽然不算难,但是阅读量普遍比较低,我本来是不想写 Prim 算法的,但考虑到算法知识结构的完整性,我还是想把 Prim 算法的坑填上,这样所有经典的图论算法就基本完善了。
最小生成树:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。根据定义可知对于一个有V个顶点的图来说,其最小生成树定包含V个顶点与V-1条边。反过来如果一个图的最小生成树存在,那么图一定是连通图。 对于最小生成树算法最著名的有两种:Prim算法与Kruskal算法。
在上一篇文章中,我们看了一下图的遍历算法,主要是对图的深度优先遍历和图的广度优先遍历算法思想的介绍。接下来让我们来看一下图的最小声成树算法。
HDU 4081 Qin Shi Huang's National Road System(次小生成树-Kruskal) 博主的方法很好,但是有疑问,为什么不能将最多人口的两城市的距离设置为0,在进行Prim操作,求B呢?这个将在后续的刷题中体现。 POJ 2377 Bad Cowtractors(最大生成树-Kruskal) 裸题,可以用来熟悉算法。 HDU 6141 I am your Father!(最小树形图) 朱刘算法,这个还不会,稍后来填坑。 CodeForces 609 E.Minimu
一个连通的生成树是图中的极小连通子图,它包括图中的所有顶点,并且只含尽可能少的边。这意味着对于生成树来说,若砍去它的一条边,就会使生成树变成非连通图;若给它添加一条边,就会形成图中的一条回路。
最小生成树( Minimum Spanning Tree , MST )是图论中的一个重要问题,涉及到在一个加权连通图中找到一棵包含所有节点且边的权重之和最小的树。最小生成树问题在许多实际应用中都有重要作用,例如通信网络设计、电路板布线、城市规划等。在本篇博客中,我们将深入探讨最小生成树算法的优化和应用,主要关注两个著名的算法: Prim 算法和 Kruskal 算法。
上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索。本篇博客就在上一篇博客的基础上进行延伸,也是关于图的。今天博客中主要介绍两种算法,都是关于最小生成树的,一种是Prim算法,另一个是Kruskal算法。这两种算法是很经典的,也是图中比较重要的算法了。 今天博客会先聊一聊Prim算法是如何生成最小生成树的,然后给出具体步骤的示例图,最后给出具体的代码实现,并进行测试。当然Kruskal算法也是会给出具体的示例图,然后给出具体的代码和测试用例。当然本篇博客中
生成树指在无向图中找一棵包含图中的所有节点的树,此树是含有图中所有顶点的无环连通子图。对所有生成树边上的权重求和,权重和最小的树为最小生成树,次小的为次最小生成树。
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
练习题: LeetCode 1135. 最低成本联通所有城市(最小生成树+排序+并查集) LeetCode 1489. 找到最小生成树里的关键边和伪关键边(并查集+kruskal最小生成树)
上一篇:加权无向图的实现 加权无向图----Kruskal算法实现最小生成树 图的生成树是它的一棵含有其所有顶点的无环连通子图,加权图的最小生成树(MST)是它的一棵权值最小的生成树。 切分:图的一种切分是将图的所有顶点分为两个非空且不重合的两个集合。横切边是一条连接两个属于不同集合的顶点的边。 切分定理:在一幅加权图中,给定任意的切分,它横切边中权重最小者必然属于图的最小生成树。 切分定理是解决最小生成树问题的所有算法的基础。 Prim算法能够得到任意加权连通无向图的最小生成树。 数据结构设计: 采用一
图的“多对多”特性使得图在结构设计和算法实现上较为困难,这时就需要根据具体应用将图转换为不同的树来简化问题的求解。
最小生成树算法用于在一个连通加权无向图中找到一个生成树,使得生成树的所有边的权重之和最小。最小生成树问题在许多实际应用中都有重要的作用,例如网络设计、电力传输等。
在一给定的无向图 G = ( V , E ) G = (V, E) G=(V,E) 中, ( u , v ) (u, v) (u,v)代表连接顶点 u u u 与顶点 v v v 的边,而 w ( u , v ) w(u, v) w(u,v) 代表此边的权重,若存在 T T T 为 E E E 的子集且为无循环图,使得 w ( T ) w(T) w(T) 最小,则此 T T T 为 G G G 的最小生成树,因为 T T T是由图 G G G产生的。
给定一张带权无向图 G=(V,E),n = |V|, m = |E|。由 V 中全部 n 个顶点和 E 中 n-1 条边构成的无向连通子图被称为 G 的一棵生成树。边权和最小的生成树被称为无向图 G 的最小生成树(Minimum Spanning Tree,MST)。
前言 在数据结构与算法的图论中,(生成)最小生成树算法是一种常用并且和生活贴切比较近的一种算法。但是可能很多人对概念不是很清楚,什么是最小生成树? 一个有 n 个结点的连通图的生成树是原图的极小连通子
该文章是一篇技术文章,主要介绍了如何通过编辑距离算法实现文本相似度的计算。文章首先介绍了编辑距离算法的原理,然后详细讲解了基于编辑距离的文本相似度计算方法,并给出了具体的实现代码。最后,文章还探讨了编辑距离算法在技术社区中的应用,包括相似度计算和相似问答系统。
Dijkstra’s algorithm(迪杰斯特拉算法)是一种用于求解单源最短路径问题的经典算法。该算法可以计算从单个起始节点到图中所有其他节点的最短路径。Dijkstra’s algorithm适用于没有负权边的有向或无向带权图。
通俗易懂的讲就是最小生成树包含原图的所有节点而只用最少的边和最小的权值距离。因为n个节点最少需要n-1个边联通,而距离就需要采取某种策略选择恰当的边。
由一个带权值的联通图到一个最小生成树的过程,其实就是从图的所有边中挑出一部分边用来组成树的过程,所以关键在于如何挑选边。
此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
应用图解决现实问题是我们使用图这种数据结构的原因所在。 最小生成树是图的应用中很常见的一个概念,一个图的最小生成树不是唯一的,但最小生成树的边的权值之和纵使唯一的。最小生成树的算法主要有Prim算法和Kruskal算法。这两种算法都是基于贪心算法策略(只考虑眼前的最佳利益,而不考虑整体的效率)。 拓扑排序是指由一个有向无环图的顶点组成的序列,此序列满足以下条件:
在学习了图的基本结构和遍历方式后,我们再继续地深入学习一些图的基本应用。在之前的数据结构中,我们并没接触太多的应用场景,但是图的这两类应用确是面试或考试中经常出现的问题,而且出现的频率还非常高,不得不来好好说一说。
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。
HDU 1102 Constructing Roads(最小生成树-Prim) 最常见的,将已建成的路的权值设置为0,求最小生成树! HDU 1162 Eddy's picture(最小生成树-Prim) 裸题,联系敲板子吧! POJ 2560 Freckles(最小生成树-Kruskal) 裸题 POJ 2728 Desert King(01分数规划+二分+最小生成树-Prim) 0/1线性规划,二分做题!这个题得刷! POJ 1679 The Unique MST(次
快要一整个月没有更新博客了,之前的几周每周都想着要写,但是最后时间还是排不开,最近的状态是一直在写代码,一直在怼工作的需求,顺便刷刷算法题,国庆则是没心没肺的玩了七八天,时间这么一分摊,写博客的时间总是挤不出来,罪过罪过。
PHP数据结构(十一)——图的连通性问题与最小生成树算法(1) (原创内容,转载请注明来源,谢谢) 一、连通分量和生成树 1、无向图 设E(G)为连通图G的所有边的集合,从图的任意一点出发遍历图,可以将E(G)分为T(G)和B(G),T表示已经遍历过的边的集合,B表示剩余边的集合。因此,T与图G的所有顶点构成的极小连通子图,就是G的一棵生成树。由深度优先搜索的称为深度优先生成树;由广度优先搜索的称为广度优先生成树。 2、有向图 有向图和无向图类似。有向图的强连通分量,是对图进行深度优先遍历,遍历完成后,
在之前的文章中已经详细介绍了图的一些基础操作。而在实际生活中的许多问题都是通过转化为图的这类数据结构来求解的,这就涉及到了许多图的算法研究。
Prim 算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中,算法从某一个顶点开始,逐渐长大覆盖整个连通网的所有顶点。
给定一个带权的无向连通图,能够连通该图的全部顶点且不产生回路的子图即为该图的生成树;
生成树:给定无向图G=(V,E),连接G中所有点,且边集是E的n-1条边构成的无向连通子图称为G的生成树(Spanning Tree),而边权值总和最小的生成树称为最小生成树(Minimal Spanning Tree,MST)。
连通图:无向图G中,若从顶点i到顶点j有路径相连,则称i,j是连通的;如果G是有向图,那么连接i和j的路径中所有的边都必须同向;如果图中任意两点之间都是连通的,那么图被称作连通图。
它的最小生成树是什么样子呢?下图绿色加粗的边可以把所有顶点连接起来,又保证了边的权值之和最小:
01 — 一个实际问题 要在n个城市之间铺设光缆,要求有2个: 这 n 个城市的任意两个之间都可以通信; 铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此要使铺设光缆的总费用最低。 如下所示
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不再连通;反之,在其中引入任何一条新边,都会形成一条回路。
,向生成树中添加任意一条边,则会形成环。生成树存在多种,其中权值之和最小的生成树即为最小生成树。
POJ 1797 Heavy Transportation(最大生成树-Prim) 最大生成树,方法模仿最小生成树,每次选最大边进行操作,即可。 HDU 5723 Abandoned country(最小生成树Kruskal+树形DP) 未解决等待树形DP,再回头来看这个题目。 HDU 5624 KK's Reconstruction(最小生成树-Kruskal) 这个题是让所求最小生成树的最大值与最小值相差最小,对于一棵最小生成树,当他的最小值确定后,他的最大值也就确定
上一篇文章,我们讲了图的创建和遍历,其中遍历的算法主要有BFS(广度优先算法)和DFS(深度优先算法)两种,并且DFS算法对很多问题都有很好的启示!而今天我们要说一个非常实用的算法——最小生成树的建立!这是图论中一个经典问题,可以使用Kruskal和Prim两种算法来进行实现!
"村村通"是国家一个系统工程,其包涵有:公路、电力、生活和饮用水、电话网、有线电视网、互联网等等。
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算
图论是研究图的数学理论和方法,其中图是由顶点集合及连接这些顶点的边集合组成的数学结构。图论在计算机科学、网络规划、生物信息学等众多领域都有重要应用。最小生成树(Minimum Spanning Tree,MST)是图论中一个经典问题,指在一个加权连通图中寻找一棵权值最小的生成树。克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法是解决最小生成树问题的两种著名算法。
生成树就是在保证自身是树(不存在环)的前提下,拥有尽可能多的边,它拥有G的所有顶点。
我们在图的定义中说过,带有权值的图就是网结构。一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边。所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小。综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree)。 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法。 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,如图7-6
求无向网的最小生成树的算法有两种:Prim和Kruskal,它们都是利用最小生成树的MST性质得到的。
题意:若最小生成树唯一则输出权值和,若不唯一输出Not Not Unique! 运用prim算法将最小生成树求出,然后在依次枚举删除最小生成树中的每一条边,判断是否还能构成一个新的最小生成树,且权值和与初始的权值和相等,若能构成则不唯一 #include<stdio.h> #include<stdlib.h> #include<vector> using namespace std; /*看了很久才相处为什么要用这个stl 假设v,u都为最小生成树中的点,但是 v,u所扩展出来的最小生成树边却不一定相等 所
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。 中文名 普里姆算法 外文名 Prim Algorithm 别 称 最小生成树算法 提出者 沃伊捷赫·亚尔尼克(Vojtěch Jarník) 提出时间 1930年 应用学科 计算机,数据结构,数学(图论) 适用领域范围 应用图论知识的实际问题 算 法 贪心 目录 1 算法描述 2 时间复杂度 3 图例描述 4 代码 ▪ PASCAL代码 ▪ c代码 ▪ C++代码 5 时间复杂度 算法描述编辑 1).输入:一个加权连通图,其中顶点集合为V,边集合为E; 2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空; 3).重复下列操作,直到Vnew = V: a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一); b.将v加入集合Vnew中,将边加入集合Enew中; 4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
本篇我们会聊聊最小生成树,最小生成树和之前的无向图最大的区别是这个每一条边都是带有权重的。在聊最小生成树之前 我们要先聊两个理念,因为最小生成树是基于这两个理念的基础上得到的相关数据结构算法。
图论中知名度比较高的算法应该就是 Dijkstra 最短路径算法,环检测和拓扑排序,二分图判定算法 以及今天要讲的最小生成树(Minimum Spanning Tree)算法了。
领取专属 10元无门槛券
手把手带您无忧上云