线性判别分析,全称是Linear Discriminant Analysis, 简称LDA, 是一种属于监督学习的降维算法。与PCA这种无监督的降维算法不同,LDA要求输入数据有对应的标签。
偏导数刻画了函数沿坐标轴方向的变化率,但有些时候还不能满足实际需求。为了研究函数沿着任意方向的变化率,就需要用到方向导数。
n :特征量的数目 x^(i) :第 i 个训练样本的输入特性值 x^(i)_j :第 i 个训练样本中第 j 个特征量的值
本周主要介绍一篇基于传统光流法而改进的实现快速的稠密光流算法。该算法已经集成到OpenCV中,算法介绍网址:http://lear.inrialpes.fr/src/deepmatching/
梯度下降(Gradient Descent GD)简单来说就是一种寻找目标函数最小化的方法,它利用梯度信息,通过不断迭代调整参数来寻找合适的目标值。 本文将介绍它的原理和实现。
在上一次的介绍中,我们稍微了解到了关于support vector machine 的一些入门知识。今天,我们将真正进入支持向量机的算法之中,大体的框架如下: 1、最大间隔分类器 2、线性可分的情况(详细) 3、原始问题到对偶问题的转化 4、序列最小最优化算法 1、最大间隔分类器 函数间隔和几何间隔相差一个∥w∥ 的缩放因子(感觉忘记的可以看一下上一篇文章)。按照前面的分析,对一个数据点进行分类,当它的间隔越大的候,分类正确的把握越大。对于一个包含n 个点的数据集,我们可以很自然地定义它的间
损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:
概念一节下分为激活函数:反向传播算法、学习率、梯度下降和损失(最小化)目标(最大化)函数。
主成分分析(PCA)是一种降维算法,通常用于高维数据降维减少计算量以及数据的降维可视化。在本文中,我将从机器学习的角度来探讨主成分分析的基本思想。本次只涉及简单的PCA,不包括PCA的变体,如概率PCA和内核PCA。
翻译了一篇博文,原文pdf可后台回复“最小二乘”下载。 当面试时问到最小二乘损失函数的基础数学知识时,你会怎么回答? Q: 为什么在回归中将误差求平方? A:因为可以把所有误差转化为正数。 Q:为什么
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。
【新智元导读】 作者dformoso在Github上放出了自己绘制的深度学习思维导图,共有三张:基本概念、架构和TensorFlow。以图示的方法介绍深度学习必备的基本概念和架构,很好地展示了各个要素
如今训练神经网络最常见的方法是使用梯度下降或 Adam 等变种。梯度下降是寻找函数极小值的迭代优化算法。简单的说,在最优化问题中,我们对某个度量 P 感兴趣,想找到一个在某些数据(或分布)D上最大化(或最小化)该度量的函数(或函数的参数)。这听起来就像是机器学习或深度学习。我们有一些指标,例如准确率,甚至更好的精度/召回率或F1值;有一个带有可学习参数的模型(我们的网络);还有数据(训练和测试集)。使用梯度下降,我们将“搜索”或“优化”模型的参数,从而最终使训练和测试集上的数据指标(准确率)最大化。
当然,如果你是一个忙碌的人,没有时间去健身房,把楼梯当作是有氧运动的简易版,那么走楼梯会更好。但是除此之外,你更可能选择乘电梯。
无监督学习是机器学习的另一大分支,与监督学习不同,无监督学习的数据集中没有数据标签,因此无法像监督学习的分类和回归问题那样学习对应标签的数据特征,无监督学习只能通过算法分析数据间的相似性来对数据进行聚类分析,今天我们就来看一下两大聚类算法:K-means聚类和分层聚类。
原文: http://www.benfrederickson.com/numerical-optimization/ 作者:Ben Frederickson
LR主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。
不知看过多少次极大似然估计与最大后验概率估计的区别,但还是傻傻分不清楚。或是当时道行太浅,或是当时积累不够。
【新智元导读】 训练神经网络的算法有成千上万个,最常用的有哪些,哪一个又最好?作者在本文中介绍了常见的五个算法,并从内存和速度上对它们进行对比。最后,他最推荐莱文贝格-马夸特算法。 用于神经网络中执行学习过程的程序被称为训练算法。训练算法有很多,各具不同的特征和性能。 问题界定 神经网络中的学习问题是以损失函数f的最小化界定的。这个函数一般由一个误差项和一个正则项组成。误差项评估神经网络如何拟合数据集,正则项用于通过控制神经网络的有效复杂性来防止过拟合。 损失函数取决于神经网络中的自适应参数(偏差和突触权值
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子: $$\theta^* = \arg \min_\theta \frac{1}{N}{}\sum_{i=1}^{N} L(y_i, f(x_i; \theta)) + \lambda\ \Phi
支持向量机和支持向量回归是目前机器学习领域用得较多的方法,不管是人脸识别,字符识别,行为识别,姿态识别等,都可以看到它们的影子。在我的工作中,经常用到支持向量机和支持向量回归,然而,作为基本的理论,却没有认真地去梳理和总结,导致有些知识点没有彻底的弄明白。这篇博客主要就是想梳理一遍支持向量机和支持向量回归的基础理论知识,一个是笔记,另一个是交流学习,便于大家共勉。
作者: 黄海安 编辑: 陈人和 概述 信息熵是信息论和机器学习中非常重要的概念,应用及其广泛,各种熵之间都存在某些直接或间接的联系,本文试图从宏观角度将各种熵穿插起来,方便理解。本文首先讲解机器学习算法中常用的各种熵的概念、公式、推导,并且联系机器学习算法进行说明熵的应用,最后是简单总结。希望通过本文能够全面的梳理熵的各方面知识,由于本人水平有限,如写的不好地方,敬请原谅! 机器学习常用熵定义 熵是什么?熵存在的意义是啥?为什么叫熵?这是3个非常现实的问题。
这一章主要讲的是:机器学习的一些问题,有一部分可以通过数学推导的方式直接得到用公式表达的解析解,但对绝大多数的问题来说,解析解是不存在的,需要使用迭代更新的方法求数值解。然而实数的精度是无限的,而计算机能够表达的精度是有限的,这就涉及到许多数值计算方法的问题。因此机器学习中需要大量的数值运算,通常指的是迭代更新求解数学问题。常见的操作包括优化算法和线性方程组的求解。
【导读】本文是数据科学家Jonny Brooks-Bartlett概率论基础概念系列博客中的“极大似然估计”一章,主要讲解了极大似然估计的若干概念。分别介绍了参数、直观理解极大似然估计、极大似然估计计
大数据文摘出品 编译:元元、张馨月 在这个数据科学越来越火的时代,数据科学家的工作到底是怎样的呢? 数据科学越来越火,很多人都想转行入坑数据科学家,这当然是好事。可是很多人都以为数据科学、机器学习等等流行词对应的工作,就是把数据塞进Sckit-Learn这个算法库里而已。 事实远远没有那么简单,下面我带大家走进真实的数据科学世界。 让我们从数据搜集完成后开始讲起。 问题阐述 “数据消耗”反映了特定服务类别数据的下载和上传量,比如社交网络,音频等等。我们来看一个具体的例子。假设我们研究的是一个计数器,利用该
范数是一种数学概念,可以将向量或矩阵映射到非负实数上,通常被用来衡量向量或矩阵的大小或距离。在机器学习和数值分析领域中,范数是一种重要的工具,常用于正则化、优化、降维等任务中。
首先,我们要明确矩阵链乘法问题的原始形式:给定一个矩阵链 ( A_1, A_2, \ldots, A_n ),我们要找到一种括号化方案,使得乘法运算的次数最少。这个问题确实具有最优子结构性质,并可以使用动态规划来解决。
本节将介绍两类问题的不同解决方案。其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程;其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法。(书中章节名称为Optimization)
回顾下二分查找的思想,若序列呈升序,我们求出中间值mid,并判断是否满足条件。满足条件输出答案,若不满足将正确答案与mid进行大小的判断,如果比mid大,说明答案在右侧,更新查找区间的最小范围;如果比mid小,说明答案在左侧,更新查找区间的最大范围。
前言:CNN的优化方法依旧可以是梯度下降的方法,类似于BP算法中的反向传播,一般采用小批量梯度下降的方法,来更新参数,同时回答CNN遗留下来几个问题 池化层怎么反向传播? Maxpool 池化层反向传
; 输出:实例x所属的类y (1)根据给定距离度量,训练集T中找与x最近邻的k个点,涵盖k个点的x的邻域记
本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来说,运用感性直觉的思考来帮大家梳理Word2vec相关概念。
选自arXiv 机器之心编译 参与:吴攀 伦比亚大学和 Adobe 的三位研究者近日在 arXiv 上的一篇论文《用作近似贝叶斯推理的随机梯度下降(Stochastic Gradient Desce
摘要 本文介绍了一种适合挖掘超大型数据库的聚类和排序ordination算法,包括微阵列表达式研究microarray expression studies产生的数据库,并对其稳定性进行了分析。 在实际条件下,利用一个酵母细胞周期实验,对6000个基因进行实验,并对每个基因进行18个实验测量。 将数据库对象分配X、Y坐标及顺序的过程,在随机启动条件下,以及在开始相似度估计中对小扰动的处理是稳定的。 对聚类通常共同定位的方式进行了仔细的分析,而在不同的初始条件下偶尔出现的大位移则被证明在解释数据时非常有用。 当只报告一个聚类时,就会丢失这种额外的稳定性信息,这是目前已被接受的实践。 然而,在分析大型数据收集的计算机聚类时,人们认为这里提出的方法应该成为最佳实践的标准部分。
不知道你是否还记得上一篇文章,我们使用深度优先搜索算法来解决井字棋游戏,递归所有可能的分支,然后找到最佳的游戏结果。因为我们是自底向上搜索,我们能够判断每一步棋是赢、输或者平局,为每位玩家下出最佳的一步棋。这使得解决方案非常简单,原因如下:
Adaline算法与前一篇文章提到的感知器之间的关键差异在于adaline算法规则的权重基于线性激活函数更新。而感知器则是基于单位跃阶函数。Adaline的线性激活函数是净输入函数的同等函数,即
scipy.optimize.minimize() 是 Python 计算库 Scipy 的一个功能,用于求解函数在某一初始值附近的极值,获取 一个或多个变量的标量函数的最小化结果 ( Minimization of scalar function of one or more variables. )。
卷积神经网络在解决图像分割等关键人工视觉挑战方面取得了巨大成功。然而,训练这些网络通常需要大量标记的数据,而数据标记是一项昂贵而耗时的任务,因为涉及到大量的人力工作。在本文中,我们提出了两种像素级的域自适应方法,介绍了一种基于CNN的虹膜分割训练模型。基于我们的实验,所提出的方法可以有效地将源数据库的域转移到目标数据库的域,产生新的自适应数据库。然后,使用调整后的数据库来训练用于目标数据库中虹膜纹理分割的细胞神经网络,从而消除了对目标标记数据的需要。我们还指出,为新的虹膜分割任务训练特定的CNN,保持最佳分割分数,使用非常少量的训练样本是可能的。
Python版本: Python3.x 运行平台: Windows IDE: Sublime text3 一、前言 说来惭愧,断更快半个月了,本打算是一周一篇的。感觉SVM瞬间难了不少,推导耗费了很多时间,同时身边的事情也不少,忙了许久。本篇文章参考了诸多大牛的文章写成的,对于什么是SVM做出了生动的阐述,同时也进行了线性SVM的理论推导,以及最后的编程实践,公式较多,还需静下心来一点一点推导。 本文出现的所有代码,均可在我的github上下载,欢迎Follow、Star:https://githu
线性模型形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想,许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得,此外,由于
看到一堆点后试图绘制某种趋势的曲线的人。每个人都有这种想法。当只有几个点并且我绘制的曲线只是一条直线时,这很容易。但是每次我加更多的点,或者当我要找的曲线与直线不同时,它就会变得越来越难。在这种情况下,曲线拟合过程可以解决我所有的问题。输入一堆点并找到“完全”匹配趋势的曲线是令人兴奋的。但这如何工作?为什么拟合直线与拟合奇怪形状的曲线并不相同。每个人都熟悉线性最小二乘法,但是,当我们尝试匹配的表达式不是线性时,会发生什么?这使我开始了一段数学文章之旅,stack overflow发布了[1]一些深奥的数学表达式(至少对我来说是这样的!),以及一个关于发现算法的有趣故事。这是我试图用最简单而有效的方式来解释这一切。
选自arxiv 机器之心编译 参与:乾树、蒋思源 学习算法一直以来是机器学习能根据数据学到知识的核心技术。而好的优化算法可以大大提高学习速度,加快算法的收敛速度和效果。该论文从浅层模型到深度模型纵览监
给你一个整数 n ,表示有 n 间零售商店。总共有 m 种产品,每种产品的数目用一个下标从 0 开始的整数数组 quantities 表示,其中 quantities[i] 表示第 i 种商品的数目。
人工智能,深度学习和机器学习,不论你现在是否能够理解这些概念,你都应该学习。否则三年内,你就会像灭绝的恐龙一样被社会淘汰。 ——马克·库班(NBA小牛队老板,亿万富翁) 6) 输入层/输出层/隐藏层—
地址:https://www.cnblogs.com/pinard/p/6221564.html
变分自编码器(VAE)是当下最流行的生成模型系列之一,它可以被用来刻画数据的分布。经典的期望最大化(EM)算法旨在学习具有隐变量的模型。本质上,VAE 和 EM 都会迭代式地优化证据下界(ELBO),从而最大化观测数据的似然。本文旨在为 VAE 和 EM 提供一种统一的视角,让具有机器学习应用经验但缺乏统计学背景的读者最快地理解 EM 和 VAE。 论文链接(已收录于AI open):https://www.aminer.cn/pub/6180f4ee6750f8536d09ba5b 1 引言 我们往往
我们可以用a缩放(W,b)得到(aW, ab),最终使所有支持向量X0上,有|WTX0+ b| = 1,那么非支持向量上,|WTX0+ b| >1,从而得证限制条件
求函数 f(x)=9×sin(5x)+8×cos(4x), x∈[5,10] 的最大值。
机器学习中使用的许多算法都是基于基本的数学优化方法。由于各种先决条件,在机器学习的背景下直接看到这些算法,我们难免会感到困惑。因此,我认为最好不要在任何背景下查看这些算法,以便更好地理解这些方法。
领取专属 10元无门槛券
手把手带您无忧上云