👆点击“博文视点Broadview”,获取更多书讯 第二天,在另一家公司…… 小灰是吧?请简单介绍一下你自己。 好的,blah blah blah…… 下面考你一道算法题: 给你一个无序数组,要求你找出数组中的第k大元素。 题目是什么意思呢?比如给定的无序数组如下: 如果 k=6,也就是要寻找数组中的第6大元素,这个元素是哪一个呢? 显然,数组中第一大的元素是24,第二大的元素是20,第三大的元素是17 ......第6大的元素是9。 让我想想啊…… 对了,我可以先把无序数组排序
显然,数组中第一大的元素是24,第二大的元素是20,第三大的元素是17 ......第6大的元素是9。
选择法排序的思路是,从所有元素中选择最小的一个将其与第一个元素交换,然后从剩余元素中选择最小的一个将其与第二个元素交换,再从剩余元素中选择最小的一个将其与第三个元素交换,重复这个过程,直至不再有剩余元素。选择排序算法的时间复杂度为O(n^2)。选择法排序是不稳定的,在某种意义下相等的元素可能无法保持原来的相对顺序。
选择排序法 1.工作原理(算法思路) 给定一个待排序数组,找到数组中最小的那个元素 如果最小元素不是待排序数组的第一个元素,则将其和第一个元素互换 在剩下的元素中,重复1、2过程,直到排序完成。 2.
所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。
题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1. 实现数组的旋转见左旋转字符串。 和二分查找法一样,用两个指针分别指向数组的第一个元素和最后一个元素。 我们注意到旋转之后的数组实际上可以划分为两个排序的子数组,而且前面的子数组的元素都大于或者等于后面子数组的元素。我们还可以注意到最小的元素刚好是这两个子数组的分界线。我们试着用二元
许多人都说算法是程序的核心,算法的好坏决定了程序的质量。作为一个初级phper,虽然很少接触到算法方面的东西。但是对于基本的排序算法还是应该掌握的,它是程序开发的必备工具。这里介绍冒泡排序,插入排序,选择排序,快速排序四种基本算法,分析一下算法的思路。 前提:分别用冒泡排序法,快速排序法,选择排序法,插入排序法将下面数组中的值按照从小到大的顺序进行排序。 $arr(1,43,54,62,21,66,32,78,36,76,39); 1. 冒泡排序 思路分析:在要排序的一组数中,对当前还未排好的序列,
暴力法是可以用来解决广阔领域的各种问题,它也可能也是唯一一种几乎什么问题都能解决的一般性方法。在输入数据的规模并不巨大的情况下,我们可以使用暴力法来解决一些问题。
许多人都说算法是程序的核心,算法的好坏决定了程序的质量。作为一个初级phper,虽然很少接触到算法方面的东西。但是对于基本的排序算法还是应该掌握的,它是程序开发的必备工具。这里介绍冒泡排序,插入排序,选择排序,快速排序四种基本算法,分析一下算法的思路。 前提:分别用冒泡排序法,快速排序法,选择排序法,插入排序法将下面数组中的值按照从小到大的顺序进行排序。 $arr(1,43,54,62,21,66,32,78,36,76,39);
需求:分别用 冒泡排序法,快速排序法,选择排序法,插入排序法将下面数组中 的值按照从小到的顺序进行排序。
在实际使用数组的过程中,数组不仅可以存储多个同类型的数据,而且要求这些数据按照某种特征进行排序。例如,学生的成绩,需要按照从高到低的顺序排列,这就需要使用排序算法。
iTesting,爱测试,爱分享 沉寂了一段时间,继续学习。 算法这个系列我想分享很久了,奈何本身对算法不是特别了解,又找不到合适的载体来分享。 最近看了本有趣的算法书, 文中通过图文并茂的讲解给我很大启发,尝试着分享下。需要注意的是, 文中各个算法的写法不是简单的拷贝,算理解思想后拿Python3重新写了遍,分享的代码和书中的例子也稍有不同,加了些日常工作中会做的处理,如有不适,请联系我。 二分查找 --仅当列表是有序的时候才能用 思想: 1.目标是找数组中的某一个元素,暂叫item 2.找出整个数组中间
HTML5学堂-码匠:数据快速的计算与排序,与前端页面性能有直接的关系。由于排序的算法有很多,在本次“算法系列”的分享当中,我们先从简单易上手的选择排序法开始,其它的排序算法会随后陆续跟大家一起分享。 算法的基本概念 算法是什么,它有何作用 为解决一个问题而采取的方法和步骤,称为算法。 我们可以把算法看成一本“福字剪纸教程”,其中每一种算法就是剪纸教程中的一种包含“固定步骤”的剪纸方法,使用者只要按照步骤进行剪纸,就可以剪出好看的福字。 之所以有这么多的算法,在于不同算法解决问题的效率各有不同,适合不同的场
自学计算机网络的时候看到一张哈佛案例教学精髓的图片,觉得说的不错,顺便想了一下正在学习的C语言,被动学习都做到位了,看课,看书,理解后做笔记等等;主动学习也做了一部分,但只做了实战演练,没有转教别人,结合我C语言学习过程中遇到的各类麻烦,写篇C语言排序的文章,用我自己的方式讲述,帮助不能理解的朋友理解,顺便得到一些反馈帮助我自己
算法是人们利用电脑解决问题的技巧。《图解算法》这本书以轻松的对话方式,采用图解的辅助说明,帮助读者简单、自然地掌握算法的基本概念,并养成主动思考的习惯,达到用算法解决实际问题的目的。本书豆瓣评分高达8.4,建议要学习算法的同学可以先看这本书入门。
这个过程引用到了单调栈的思想。就是一个栈,里面所有元素是非严格单调递增或者单调递减的。比较好思考,就是每一个数组都要越来越小,如果不满足递减的数字,说明要从栈中取出来几个数字了。
二分查找也称为折半查找,是指当每次查询时,将数据分为前后两部分,再用中值和待搜索的值进行比较,如果搜索的值大于中值,则使用同样的方式(二分法)向后搜索,反之则向前搜索,直到搜索结束为止。
深度学习典型代表是以神经网络为主的联结式算法,在深度学习问题中,通常会预先定义一个损失函数,并通过相应手段(即一些优化算法)使其损失最小化,以不断更新权值和偏移量,最后训练出一个泛化能力良好的模型。
给你一个长度为n 的整数数组,每次操作将会使 n - 1个元素增加1。返回让数组所有元素相等的最小操作次数。
本文记录了一些数据结构面试常见问题,本意用于考研复试,以下面试题为网上整理的问题以及自己加入的一些问题,答案仅供参考!
比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
代码如下 def selectionSort(x): i = 0 while i < len(x) - 1: minindex = i j = i + 1 while j < len(x) : if x[minindex] > x[j]: minindex = j j+= 1 if minindex != i: swap(x,i,minindex) i+= 1 return x 函数包括一个嵌套的循环,对于大小为n的列表,外围的循环执行n-1次,内部循环的次数从n-1递减到1,因此,选择排序在各种情况下的复杂度为平方阶,运行结果如下
分治法的基本思想: 将一个规模为 n 的问题分解为 k 各规模较小的子问题, 这些子问题互相独立且与原问题是同类型问题。 递归地解这些子问题, 然后把各个子问题的解合并得到原问题的解。 分治法所能解决的问题一般具有的几个特征是: 该问题规模缩小到一定程度就可以容易地解决; 该问题可以分解为若干个规模较小的同类型问题; 利用该问题分解出的子问题的解可以合并为该问题的解; 原问题分解出的各个子问题是相互独立的, 即子问题之间不包含公共的子问题。 分治法可以解决的具体问题:矩阵连乘、大数乘法、二分法搜索、快速排序
排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。 内部排序:数据元素全部放在内存中的排序。 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。 常见排
排序是确保数据规则有序的有效手段。日常开发里,我们常用到的是“冒泡”、“插入排序”、“选择排序”三种。
冒泡法是相邻元素两两比较,每趟将最值沉底即可确定一个数在结果的位置,确定元素位置的顺序是从后往前,其余元素可以作相对位置的调整。可以进行升序或降序排序。
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。结构包括逻辑结构和物理结构。
许多人都说算法是程序的核心,算法的好坏决定了程序的质量。作为一个初级phper,虽然很少接触到算法方面的东西。但是对于基本的排序算法还是应该掌握的,它是程序开发的必备工具。这里介绍冒泡排序,插入排序,选择排序,快速排序四种基本算法,分析一下算法的思路。
本文主要介绍了常见的8大排序算法基本概念以及其Python实现方式,如果你是Java程序员,也可以看看之前我们介绍的Java程序员必须掌握的8大排序算法。
排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。本文主要讲述python中经常用的三种排序算法,选择排序法,冒泡排序法和插入排序法及其区别。通过对列表里的元素大小排序进行阐述。
许多人都说算法是程序的核心,一个程序的好于差,关键是这个程序算法的优劣。作为一个初级phper,虽然很少接触到算法方面的东西 。但是对于冒泡排序,插入排序,选择排序,快速排序四种基本算法,我想还是要掌握的。
本文用Python实现了插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。
本系列文章【数据结构与算法】所有完整代码已上传 github,想要完整代码的小伙伴可以直接去那获取,可以的话欢迎点个Star哦~下面放上跳转链接
最新准备考试软件设计师,需要专门学习一下算法的基础,以及常见算法学习,特意写了这篇博客,所有算法都已在IDEA上面调试过了,没有问题。
导语:今天分享一个开源项目,里面汇总了程序员技术面试时需要了解的算法和数据结构知识,并且还提供了相应的代码,目前 GitHub 上标星 35000 star,值得一看。
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
为了找到目标元素,每次可以通过减少搜索区域的一半来查找。二分查找算法是针对有序的数组进行,否则毫无意义。
(1)我们需要特别注意的是奖金计算规则是按业绩分段设计的,也就是说跨段位的业绩奖金计算需要分段求和,而不是只按最高标准计算。
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
在深度学习任务中,我们常常会为模型定义一个损失函数,损失函数表征的是预测值和实际值之间的差距,再通过一定的优化算法减小这个差距
来源 | CSDN| 作者 | yofer张耀琦 前言 前两天面试3面学长问我的这个问题(想说TEG的3个面试学长都是好和蔼,希望能完成最后一面,各方面原因造成我无比想去鹅场的心已经按捺不住了),这个
机器学习模型在训练数据集和测试数据集上的表现。如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不⼀定更准确。这是为什么呢?
今天主要来聊两个问题:给一个数组,如何同时求出最大值和最小值,如何同时求出最大值和第二大值?
今天分享一个开源项目,里面汇总了程序员技术面试时需要了解的 算法和数据结构知识,并且还提供了相应的代码,目前 GitHub 上标星 35000 star,值得一看。
衡量标准:查找过程中对关键字的平均比较次数——平均查找长度ASL。设查找到第i个元素的概率为p,比较次数为c,则查找成功的ASL_{succ}=\sum^n_{i=1}p_ic_i
本篇博客是在伍迷兄的博客基础上进行的,其博客地址点击就可以进去,里面好博客很多,我的排序算法都来自于此;一些数据结构方面的概念我就不多阐述了,伍迷兄的博客中都有详细讲解,而我写这些博客只是记录自己学习过程,加入了一些自己的理解,同时也希望给别人提供帮助。
这里排序无非就是升序和降序,那么,之前用的冒泡排序时间复杂度是很高的,所以这次来了解一个更加高效率的。
领取专属 10元无门槛券
手把手带您无忧上云