首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

最经典的线性回归模型参数估计算法——最小

首先,我们要明白最小估计是个什么东西?说的直白一点,当我们确定了一组数的模型之后,然后想通过最小的办法来确定模型的参数。...这样,每条直线都可以有一个值,我们把这个距离的和最小的那条直线找出来,我们认为这条直线它最顺眼,因为它照顾到了所有的训练样本点的情绪,不偏不倚。这种方法就是最小乘法。...公式4 我们要想办法在β的可能取值中找到一组特殊的β,使得上面这个式子的值最小。那我们自然而然想到对上面的式子进行求导,然后让导数=0,得到驻点。然后验证一下这个驻点是不是最值点,如果是的话。...公式7 那这组β可不可以让我们的公式4取得最小值呢,我们把公式7带入到公式4中 ? 公式8 公式8中的第三项它是等于0的。所以公式8只剩下了 ?...公式9 又因为X'X是一个正定矩阵,所以公式9中的第项它>=0,所以 ? 公式10 也就证明了我们的公式7中的β就是要找的那个β。

2.5K60

总体最小(TLS)

最小的“”体现在准则上——令误差的平方和最小,等价于 ? 最小解为(非奇异) ? 可以从多个角度来理解最小乘方法,譬如从几何方面考虑,利用正交性原理导出。...Steven M.Kay 的《统计信号处理—估计理论》中是这样介绍最小估计的:最小估计特点在于对观察数据没有任何概率假设,只需要假设一个信号模型,因此它不是最佳的,如果没有对数据的概率结构做出假设...,如果误差向量满足以下条件,此时最小解是无偏且具有最小方差的。 ? 定理证明可见张贤达《矩阵分析与应用》p406页。这一结论表明,最小解是一个很好的估计,那么问题出现在哪呢?...3.总体最小 如果说模型是完全正确的,我们根本不需要考虑算法的稳定性(当然,由于计算机计算时会有截位,所以这是不可能的)。道理很简单,没有扰动,为何需要分析稳定性呢?...算法对扰动的敏感度要低,我们对算法的敏感度要高才好。

4.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【技术分享】交换最小

    1 什么是ALS ALS是交替最小(alternating least squares)的简称。在机器学习中,ALS特指使用交替最小求解的一个协同推荐算法。...交换最小算法是分别固定用户特征矩阵和商品特征矩阵来交替计算下一次迭代的商品特征矩阵和用户特征矩阵。通过下面的代码初始化第一次迭代的特征矩阵。...(6)利用inblock和outblock信息构建最小。   构建最小的方法是在computeFactors方法中实现的。...有了这些信息,构建最小的数据就齐全了。...这里有两个选择,第一是扫一遍InBlock信息,同时对所有的产品构建对应的最小问题; 第是对于每一个产品,扫描InBlock信息,构建并求解其对应的最小问题。

    1.4K40

    SLAM算法&技术之Gauss-Newton非线性最小算法

    编辑丨点云PCL 前言 很多问题最终归结为一个最小问题,如SLAM算法中的Bundle Adjustment,位姿图优化等等。求解最小的方法有很多,高斯-牛顿法就是其中之一。...推导 对于一个非线性最小问题: ? 高斯牛顿的思想是把 f(x)利用泰勒展开,取一阶线性项近似。 ? 带入到(1)式: ? 对上式求导,令导数为0。 ? 令 ? 式(4)即为 ?...我们可以构建一个最小问题: ? 要求解这个问题,根据推导部分可知,需要求解雅克比。 ? 使用推导部分所述的步骤就可以进行解算。...cost_func.addObservation(x, y); } /* 用高斯牛顿法求解 */ cost_func.solveByGaussNewton(); return 0; } 基础与细节 (1)最小问题...它通过最小化误差的平方和寻找数据的最佳函数匹配。 最小平方问题分为两种:线性最小乘法,和非线性的最小乘法,取决于在所有未知数中的残差是否为线性。

    2K20

    最小回归的Python实现

    写在前面 我们构建了非常强大的私募基金数据库,并基于这个数据库,衍生出了FOF Easy数据可视化终端和FOF Power组合基金管理系统,涉及到非常多复杂的模型及算法。...回归分析是实现从数据到价值的不法门。 它主要包括线性回归、0-1回归、定序回归、计数回归,以及生存回归五种类型。 我们来讨论最基础的情况——一元线性回归。...最常见的拟合方法是最小乘法,即OLS回归。它时刻关注着实际测量数据,以及拟合直线上的相应估计值,目的是使者之间的残差有最小的平方和。...即: 为了使残差的平方和最小,我们只需要分别对a、b求偏导,然后令偏导数等于0。立即推出a、b值: 总之,OLS回归的原理是,当预测值和实际值距离的平方和最小时,我们就选定模型中的参数。...这时我们如果仍采用普通最小乘法估计模型参数,就会产生一系列不良的后果,如:参数估计量非有效、变量的显著性检验失去意义、模型的预测失效等。 所以,在本文中我们首先进行简单的ols回归。

    2.6K60

    【技术分享】非负最小

    把极小化这类函数的问题称为最小问题。...math.1.2.png   当$f_{i}(x)$为x的线性函数时,称(1.2)为线性最小问题,当$f_{i}(x)$为x的非线性函数时,称(1.2)为非线性最小问题。...由于$f_{i}(x)$为非线性函数,所以(1.2)中的非线性最小无法套用(1.6)中的公式求得。 解这类问题的基本思想是,通过解一系列线性最小问题求非线性最小问题的解。...在$x^{(k)}$时,将函数$f_{i}(x)$线性化,从而将非线性最小转换为线性最小问题, 用(1.6)中的公式求解极小点$x^{(k+1)}$ ,把它作为非线性最小问题解的第k+1次近似...非负最小问题要求解的问题如下公式 其中ata是半正定矩阵。   在ml代码中,org.apache.spark.mllib.optimization.NNLS对象实现了非负最小算法

    3.8K30

    非线性最小问题例题_非线性自适应控制算法

    摘录的一篇有关求解非线性最小问题的算法–LM算法的文章,当中也加入了一些我个人在求解高精度最小问题时候的一些感触: LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小问题...LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉阶以上的导数项,从而转化为线性最小问题,它具有收敛速度快等优点。...至于这个求导过程是如何实现的,我还不能给出建议,我使用过的方法是拿到函数的方程,然后手工计算出其偏导数方程,进而在函数中直接使用,这样做是最直接,求导误差也最小的方式。...不过,我个人估计(没有任何依据的,只是猜的):依赖于LM算法的高效,就算添加了一个数值求导的“拖油瓶”,整个最优化过程下来,它仍然会优于Powell等方法。...原因在于,在使用数值法估计偏导数值时,尽管我们可以控制每一步偏导数值的精度,但是由于求解过程需要进行多次迭代,特别是收敛过程比较慢的求解过程,需要进行很多次的求解,每一次求解的误差偏差都会在上一步偏差的基础上不断累积

    74130

    运用伪逆矩阵求最小

    之前分析过最小的理论,记录了 Scipy 库求解的方法,但无法求解多元自变量模型,本文记录更加通用的伪逆矩阵求解最小解的方法。...背景 我已经反复研习很多关于最小的内容,虽然朴素但是着实花了一番功夫: 介绍过最小乘在线性回归中的公式推导; 分析了最小的来源和其与高斯分布的紧密关系; 学习了伪逆矩阵在最小求解过程中的理论应用...; 记录了 Scipy 用于求解最小解的函数; 已经有工具可以解很多最小的模型参数了,但是几个专用的最小乘方法最多支持一元函数的求解,难以计算多元函数最小解,此时就可以用伪逆矩阵求解了...多元多项式形式模型 这个概念可能不够准确,我要描述的是形如如下函数的一类模型: f( {\bf x} )=\sum _{i=1}^{n}a_if_i(x_i) 其中模型 最小的损失函数为:...伪逆求解 在介绍伪逆的文章中其实已经把理论说完了,这里搬运结论: 方程组 A x=b 的最佳最小解为 x=A^{+} b,并且最佳最小解是唯一的。

    1.7K30

    支持向量机之最小(LS)-------6

    使误差平方和达到最小以寻求估计值的方法,就叫做最小乘法,用最小乘法得到的估计,叫做最小估计。当然,取平方和作为目标函数只是众多可取的方法之一。...对最小乘法的优良性做了几点说明: 最小使得误差平方和最小,并在各个方程的误差之间建立了一种平衡,从而防止某一个极端误差取得支配地位 计算中只要求偏导后求解线性方程组,计算过程明确便捷 最小可以导出算术平均值作为估计值...由于算术平均是一个历经考验的方法,而以上的推理说明,算术平均是最小的一个特例,所以从另一个角度说明了最小乘方法的优良性,使我们对最小乘法更加有信心。...Gauss 在1809 年也发表了最小乘法,并且声称自己已经使用这个方法多年。Gauss 发明了小行星定位的数学方法,并在数据分析中使用最小乘方法进行计算,准确的预测了谷神星的位置。...本质上说,最小乘法即是一种参数估计方法,说到参数估计,咱们得从一元线性模型说起。 什么是一元线性模型呢?

    2.9K90

    最小回归(PLSR)和主成分回归(PCR)

    p=2655 此示例显示如何在matlab中应用偏最小回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性。...过于拟合当前数据会导致模型不能很好地推广到其他数据,并对预期误差给出过度乐观的估计。 交叉验证是一种更加统计上合理的方法,用于选择PLSR或PCR中的组分数量。...它通过不重复使用相同的数据来适应模型和估计预测误差来避免过度拟合数据。因此,预测误差的估计不会乐观地向下偏差。...plsregress 可以选择通过交叉验证来估计均方预测误差(MSEP),在这种情况下使用10倍CV。...事实上,PCR中的第个组成部分会增加模型的预测误差,这表明该组成部分中包含的预测变量的组合与其没有很强的相关性y。再次,这是因为PCR构建组件来解释变异X,而不是y。

    2.2K10

    GWAS计算BLUE值1--计算最小均值(lsmeans)

    GWAS计算BLUE值1--计算最小均值(lsmeans) #2021.12.11 上一次,我计划写个系列,为何?...本节,介绍如何使用R语言的lm拟合一般线性模型,计算最小均值(lsmeans) 1. 试验数据 ❝数据来源:Isik F , Holland J , Maltecca C ....系数的结果是: 注意,这里的值是系数,不是最小均值。...使用函数计算最小均值 之前都是用lsmeans这个包,现在用emmeans,可以看作是lsmeans的升级包。 但是,数据量大时,这个包也是巨慢。...总结 一般,很少用一般线性模型去估算最小均值,都是用混合线性模型,将品种作为固定因子,去估计BLUE值(最佳线性无偏估计)。

    99820
    领券