首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    观点 | 三大特征选择策略,有效提升你的机器学习水准

    选自Medium 机器之心编译 参与:刘晓坤、黄小天 特征选择是数据获取中最关键的一步,可惜很多教程直接跳过了这一部分。本文将分享有关特征选择的 3 个杰出方法,有效提升你的机器学习水准。 「输入垃圾数据,输出垃圾结果」——每个机器学习工程师 什么是特征选择?面对试图解决的实际问题之时,什么特征将帮助你建模并不总是很清晰。伴随这一问题的还有大量数据问题,它们有时是多余的,或者不甚相关。特征选择是这样一个研究领域,它试图通过算法完成重要特征的选取。 为什么不把全部特征直接丢进机器学习模型呢? 现实世界的问题并

    07

    七自由度冗余机械臂梯度投影逆运动学

    冗余机械臂的微分逆运动学一般可以增加额外的优化任务。 最常用的是梯度投影算法 GPM (Gradient Project Method),文献 [1] 中第一次将梯度投影法应用于关节极限位置限位中。 该算法中设计基于关节极限位置的优化指标, 并在主任务的零空间中完成任务优化。 此种思想也用于机械臂的奇异等指标优化中。 Colome 等 对比分析了速度级微分逆向运动学中的关节极限位置指标优化问题, 但是其研究中的算法存在一定的累计误差, 因而系统的收敛性和算法的计算稳定性难以得到保证。 其他学者综合多种机器人逆向运动学方法, 衍生出二次计算方法、 梯度最小二乘以及模糊逻辑加权最小范数方法等算法。Flacco 等 针对七自 由度机械臂提出一种新的零空间任务饱和迭代算法, 当机械臂到达关节限位时, 关节空间利用主任务的冗余度进行构型调整, 从而使得机械臂回避极限位置。 近年来, 关于关节极限回避情况下的冗余机械臂运动规划成为了很多学者的研究方向, 相应的改进 策 略 也 很 多.

    043

    【计算机视觉——RCNN目标检测系列】一、选择性搜索详解

    在刚刚过去的一个学期里,基本水逆了一整个学期,这学期基本没干什么活,就跟RCNN杠上了。首先是看论文,然后是网上找tensorflow写好的源码。但是,可惜的是网上给出的源码基本上是RCNN的主要作者Ross Girshick大神的代码,不同数据集换了下。因此为了理解源码,RCNN的处理过程,费劲去装了个ubuntu和win10的双系统并在Ubuntu上安装caffe,这就花费了近2周的时间。快速研究完RCNN的caffe源码之后,才转过来手写Fast RCNN的tensorflow版本的代码,这也花费了大量的时间,从踩坑到填坑再到踩坑。RCNN不是很好实现,SVM至今还没怎么看懂。接下来将会陆续更新RCNN->Fast RCNN->Faster RCNN系列的文章。在这篇文章中,主要讲解RCNN与Fast RCNN中获取图片中物体真实目标检测框的算法——选择性搜索算法。

    01

    微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型

    来源:机器之心本文约2000字,建议阅读5分钟OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。 DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。 然而现存的剪枝

    02

    COLING24|自适应剪枝让多模态大模型加速2-3倍,哈工大等推出SmartTrim

    基于 Transformer 结构的视觉语言大模型(VLM)在各种下游的视觉语言任务上取得了巨大成功,但由于其较长的输入序列和较多的参数,导致其相应的计算开销地提升,阻碍了在实际环境中进一步部署。为了追求更为高效的推理速度,前人提出了一些针对 VLM 的加速方法,包括剪枝和蒸馏等,但是现有的这些方法大都采用静态架构,其针对不同输入实例采用同样的计算图进行推理,忽略了不同实例之间具有不同计算复杂性的事实:针对复杂的跨模态交互实例,自然需要更多计算才能完全理解图像和相关问题的复杂细节;相反,简单的实例则可以用更少的计算量解决。这也导致较高加速比下的 VLM 的性能严重下降。

    01

    加速2-3倍,哈工大|提出多模态大模型自适应剪枝算法:SmartTrim

    基于 Transformer 结构的视觉语言大模型(VLM)在各种下游的视觉语言任务上取得了巨大成功,但由于其较长的输入序列和较多的参数,导致其相应的计算开销地提升,阻碍了在实际环境中进一步部署。为了追求更为高效的推理速度,前人提出了一些针对 VLM 的加速方法,包括剪枝和蒸馏等,但是现有的这些方法大都采用静态架构,其针对不同输入实例采用同样的计算图进行推理,忽略了不同实例之间具有不同计算复杂性的事实:针对复杂的跨模态交互实例,自然需要更多计算才能完全理解图像和相关问题的复杂细节;相反,简单的实例则可以用更少的计算量解决。这也导致较高加速比下的 VLM 的性能严重下降。

    01

    微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型

    机器之心专栏 作者: 陈天翼-微软西雅图-高级研究员 OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。 DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。 然而现

    01
    领券