首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据结构】图

    1. 图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存储,那顶点和顶点之间的关系该如何存储呢?其实有两种方式可以存储顶点与顶点之间的关系,一种就是利用二维矩阵(二维数组),某一个点和其他另外所有点的连接关系和权值都可以通过二维矩阵来存储,另一种就是邻接表,类似于哈希表的存储方式,数组中存储每一个顶点,每个顶点下面挂着一个个的结点,也就是一个链表,链表中存储着与该结点直接相连的所有其他顶点,这样的方式也可以存储结点间的关系。

    01

    论文拾萃|多目标A*算法解决多模式多目标路径规划问题(MMOPP)

    1引言 多目标决策在现实生活中有着普遍的应用。解决一个多目标最优化问题需要同时考虑多个往往会相互冲突的目标。在大多数情况下,想要同时达到每个目标的最优情况是不现实的。因此,解决多目标最优化问题的目标是找到尽可能多的、权衡各个目标的解,以此方便决策者在发现的解中做出合理的抉择。 假设我们研究的多目标优化问题可以表示如下: 最小化   其中 表示个需要同时最小化的实值函数,决策空间在函数上的映射为目标空间,记为。由此,每一个可行解就对应一个M维目标向量. 若对向量和向量,对所有的 ,有,且对若干 ,有,则称绝对

    02

    多视图点云配准算法综述

    摘要:以多视图点云配准为研究对象,对近二十余年的多视图点云配准相关研究工作进行了全面的分类归纳及总结。首先,阐述点云数据及多视图点云配准的概念。根据配准的任务不同,将多视图点云配准分为多视图点云粗配准和多视图点云精配准两大类,并对其各自算法的核心思想及算法改进进行介绍,其中,多视图点云粗配准算法进一步分为基于生成树和基于形状生成两类;多视图点云精配准算法进一步分为基于点云的点空间、基于点云的帧空间变换平均、基于深度学习和基于优化四类。然后,介绍了四种多视图点云配准数据集及主流多视图配准评价指标。最后,对该研究领域研究现状进行总结,指出存在的挑战,并给出了未来研究展望。

    03

    算法与数据结构(五) 普利姆与克鲁斯卡尔的最小生成树(Swift版)

    上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索。本篇博客就在上一篇博客的基础上进行延伸,也是关于图的。今天博客中主要介绍两种算法,都是关于最小生成树的,一种是Prim算法,另一个是Kruskal算法。这两种算法是很经典的,也是图中比较重要的算法了。 今天博客会先聊一聊Prim算法是如何生成最小生成树的,然后给出具体步骤的示例图,最后给出具体的代码实现,并进行测试。当然Kruskal算法也是会给出具体的示例图,然后给出具体的代码和测试用例。当然本篇博客中

    07
    领券