最优合并问题 Description 给定k 个排好序的序列s1 , s2,……, sk , 用2 路合并算法将这k 个序列合并成一个序列。...假设所采用的2 路合并算法合并2 个长度分别为m和n的序列需要m + n -1次比较。试设计一个算法确定合并这个序列的最优合并顺序,使所需的总比较次数最少。...为了进行比较,还需要确定合并这个序列的最差合并顺序,使所需的总比较次数最多。 对于给定的k个待合并序列,计算最多比较次数和最少比较次数合并方案。...Input 输入数据的第一行有1 个正整数k(k≤1000),表示有k个待合并序列。接下来的1 行中,有k个正整数,表示k个待合并序列的长度。
,用2路合并算法将这k个序列合并成一个序列。假设所采用的2路合并算法合并2个长度分别为m和n的序列需要m+n-1次比较。试设计一个算法确认合并这个序列的最优合并顺序,使所需的总比较次数最少。...为了进行比较,还需要确认合并这个序列的最差合并顺序,使所需的总比较次数最多。对于给定的k个待合并序列,计算最多比较次数和最少比较次数合并方案。 输入描述: 第一行有1个正整数k,表示有k个待合并序列。...接下来的1行中,有k个正整数,表示k个待合并序列的长度。 输出描述: 输出最多比较次数和最少比较次数。...输入样例: 4 5 12 11 2 输出样例: 78 52 解题思路: 贪心算法,最优合并时要求m+n-1尽可能的小,所以最优合并其实就是将升序排列的序列中的最小俩个值不断合并,直到序列中只有一个元素为止...最差合并相反,降序排列的最大俩个值不断合并,直到序列中只有一个元素为止,这样就能求得最少比较次数。我是用vector的erase和push_back来模拟合并的过程的。
8.模拟算法思想 枚举算法思想 枚举算法思想的最大特点是,在面对任何问题时它会去尝试每一种解决方法。...① 分解,将要解决的问题划分成若干个规模较小的同类问题。 ② 求解,当子问题划分得足够小时,用较简单的方法解决。 ③ 合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。...贪心算法思想 本节所要讲解的贪心算法也被称为贪婪算法,它在求解问题时总想用在当前看来是最好方法来实现。这种算法思想不从整体最优上考虑问题,仅仅是在某种意义上的局部最优求解。...虽然贪心算法并不能得到所有问题的整体最优解,但是面对范围相当广泛的许多问题时,能产生整体最优解或者是整体最优解的近似解。由此可见,贪心算法只是追求某个范围内的最优,可以称之为“温柔的贪婪”。...贪心算法的基本思路如下。 ① 建立数学模型来描述问题。 ② 把求解的问题分成若干个子问题。 ③ 对每一子问题求解,得到子问题的局部最优解。 ④ 把子问题的局部最优解合并成原来解问题的一个解。
最优装载问题 最优装载问题实质上就是一个简单版的0-1背包问题 问题描述 有一批集装箱要装上一艘载重量为 c 的轮船,其中集装箱 i 的重量为 wi 最优装载问题要求确定在装载体积不受限制的情况下...,将尽可能多的集装箱装上轮船 算法描述 可用贪心算法求解/* * 若尘 */ package loading; import java.util.Arrays; /** * 最优装载问题(贪心算法...]; for (int i = 0; i < n; i++) { // 初始化 d[i] = new Element(w[i], i); } Arrays.sort(d); // 记录最优值...float[]{4, 2, 5, 1, 3}; x = new int[w.length]; float opt = Loading(c, w, x); System.out.println("最优值为...: 10.0 最优解为: 1, 1, 0, 1, 1 采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解Java 源代码代码有详细注释,不懂评论下方留言
- 力扣(LeetCode) class Solution { public: void sortColors(vector& nums) { //三路划分的思想...); } qsort(nums,begin,left); qsort(nums,right,end); } }; 三、数组中的第k个最大元素(快速选择算法...&& dp[r] - dp[k] <= upper) ++r; ret += (r - l); ++k; } //进行合并...为了解决这个问题衍生出了优化思路:三组划分+随机取key。并且这种方式还可以解决top-k问题,并且时间复杂度是o(N)比堆排序还优秀,我们称之为快速选择算法。...2,归并排序的本质就是将问题划分成无数个合并两个有序数组的子问题。
【问题描述】 学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们间有数据线连接。
问题描述: 有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。...问题可以描述为: 式中,变量xi = 0 表示不装入集装箱 i,xxi = 1 表示装入集装箱 i。 刚看到的时候,给我的感觉就像是排好序的背包问题一样,那么问题就变得简单了。
该篇文章收录专栏—趣学算法 ---- 目录 一、贪心算法 (1)介绍 (2)注意事项 (3)性质 1)贪心选择 2)最优子结构 二、最优装载问题 (1)古董重量排序 (2)贪心策略选择 模板代码 (...(3)性质 人们通过实践发现,利用贪心算法求解的问题往往具有两个重要的性质:贪心选择和最优子结构。只要满足这两个性质,就可以使用贪心算法。...1)贪心选择 贪心选择是指原问题的整体最优解可以通过一系列局部最优的选择得到:先做出当前最优的选择,将原问题变为一个相似却规模更小的子问题,而后的每一步都是当前最优的选择。...2)最优子结构 最优子结构是指原问题的最优解包含子问题的最优解。...贪心算法通过一系列的局部最优解(子问题的最优解)得到全局最优解(原问题的最优解),如果原问题的最优解和子问题的最优解没有关系,则求解子问题没有任何意义,无法采用贪心算法。
一 背包问题 背包问题,在可装物品有限的前提下,尽量装价值最大的物品,如果物品数量足够大,简单的暴力穷举法是不可行的O(2ⁿ), 前一章介绍了《贪婪算法》就是解决如何找到近似解,这接近最优解,...如何找到最优解呢?就是动态规划算法。动态规划先解决子问题,再逐步解决大问题。 每个动态规划算法都从一个网格开始,背包问题的网格如下。 网格的各行为商品,各列为不同容量(1~4磅)的背包。...现在你明 白了为何要求解子问题吧?你可以合并两个子问题的解来得到更大问题的解。 二 背包问题FAQ 2.1 再加一件商品如何 假设你还选择一件商品:iPhone 此时需要重新执行前面所做的计算吗?...2.8 计算最终的解时会涉及两个以上的子背包吗 但根据动态规划算法的设计,最多只需合并两个子背包,即根本不会涉及两个以上的子背包。不过这些子背包可能又包含子背包。...还有网上有优化算法,二维数组转一维数组,只为了求值优化,但是不能找到最优组合选择的元素。感兴趣的可以试验下。
一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。...(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)...具体步骤: 拟牛顿法的基本思想如下。首先构造目标函数在当前迭代xk的二次模型: ? 这里Bk是一个对称正定矩阵,于是我们取这个二次模型的最优解作为搜索方向,并且得到新的迭代点: ?...4.2、模拟退火算法 是用来求解最优化问题的算法。比如著名的TSP问题,函数最大值最小值问题等等。...爬山算法:显然爬山算法较简单,效率高,但是处理多约束大规模问题时力不从心,往往不能得到较好的解。 粒子群算法适合求解实数问题,算法简单,计算方便,求解速度快,但是存在着陷入局部最优等问题。
1231 最优布线问题 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的
二、递推算法 递推算法是很常用的算法思想,在数学计算等方面有着广泛的应用。递推算法适合有着明显公式规律的场合。 递推算法是一种理性思维模式的代表,其根据已有的数据和关系,逐步推导而得到结果。...递推算法往往需要用户知道答案和问题之间的逻辑关系。在许多数学问题中,都有着明确的计算公式可以遵循,因此往往可以采用递推算法来实现。 三、递归算法 递归算法是很常用的算法思想。...四、分治算法 分治算法是一种化繁为简的算法思想。分治算法往往应用于计算步骤比较复杂的问题,通过将问题简化而逐步得到结果。...分治算法的基本思想是将一个计算复杂的问题分为规模较小、计算简单的小问题求解,然后综合各个小问题,得到最终问题的答案。...(2)将该问题分解为M个规模较小的子问题,这些子问题互相独立,并且与原问题形式相同。 (3)递归地解这些子问题。 (4)然后,将各子问题的解合并得到原问题的解。
一、模拟算法的总结 1、本质:比葫芦画瓢 2、特点:思路较简单,根据题目要求即可,代码量和细节较多 3、解决方法: (1) 模拟算法流程,在草稿纸上进行演算 (2) 认真审题,考虑细节问题和边界情况
回溯法的思想: 回溯法就是当我们确定了一个问题的解空间的结构后,从根节点出发,以深度优先的方式去遍历解空间,找到合适的解。...所以用此方法分析八皇后问题如下: 解空间的结构: 将棋盘看作0-7的平面直角坐标系,八皇后问题的解就是寻找八个点的坐标(i,j)。...问题的解: 当我们结合问题对解的约束来看,八皇后问题的解就是这个64叉树上某些从根节点到叶子节点的路径上的坐标。具体约束就是皇后的攻击规则(任意两点不能在同一直线或斜线上)。...这就是回溯遍历解空间,在算法实现时,可以使用递归或迭代进行回溯遍历,分别被称为递归回溯和迭代回溯。...八皇后问题算法解决: 算法使用名为queen的二维int数组表示棋盘,数组的索引表示0-7的坐标,值为0表示空白,值为1表示皇后的摆放位置。
在算法的世界里,动态规划(Dynamic Programming,简称DP)是一种解决复杂问题的有力工具。它通过将问题分解为更小的子问题,并记忆这些子问题的结果,从而避免重复计算,提高效率。...动态规划的两个核心概念是最优子结构和重叠子问题。 一、最优子结构 最优子结构指的是一个问题的最优解可以由其子问题的最优解构造而成。...通过理解最优子结构和重叠子问题的概念,我们可以更好地应用动态规划来解决实际问题。这两个核心概念帮助我们识别问题的结构特性,并选择合适的优化策略,从而提高算法的效率。...四、总结 动态规划通过分解问题、存储子问题结果,解决了许多经典的计算问题。在实际应用中,识别问题是否具有最优子结构和重叠子问题的性质,并正确使用记忆化技术或表格法,可以显著提高算法的效率。...通过以上两个示例,相信大家对动态规划的基本思想和应用有了更深入的理解。在实际开发中,遇到复杂问题时,不妨考虑一下是否可以通过动态规划来解决。
链表排序算法总结 概述 问题描述:给定一个链表,请将这个链表升序排列。...这一题十分类似于Leetcode 0023 合并K个有序链表,我们可以使用LC23的思路求解。代码中的变量如下图所示: 上面的做法用C++演示。...合并两个有序链表可以使用Leetcode 0021 合并两个有序链表的方法。...for (auto p = head; p; p = p->next) n++; // 求出节点数目 for (int len = 1; len < n; len += len) { // 枚举合并长度...= p->next, l++; while (r next = q, q = q->next, r++; head = o; // 进行后面两段链表的合并
---- 4.3.2 最小二乘法(2) 最小二乘法也是一种最优化方法,下面在第3章3.6节对最小二乘法初步了解的基础上,从最优化的角度对其进行理解。...从最优化的角度来说,最小二乘法就是目标函数由若干个函数的平方和构成,即: 其中 ,通常 。...极小化此目标函数的问题,称为最小二乘问题(本小节内容主要参考资料是陈宝林著《最优化理论与算法》,这本书对最优化方法有系统化的介绍,有兴趣的读者可以阅读)。...在第3章3.6节运用正交方法,解决了线性最小二乘问题,除了该方法之外,还可以利用导数方法解决(第3章3.6节中的示例就使用了导数方法),下面使用向量的偏导数对 运用最小二乘法求解,这是最优化思想在最小二乘法中的运用...现在要通过计算 解决最小二乘问题。
前言 在很多问题上是没有标准解的,我们要找到最优解。 这就用到了遗传算法。 遗传算法是一种通过模拟自然进化过程来解决问题的优化算法。 它在许多领域和场景中都有广泛应用。...以下是一些常见的使用遗传算法的场景: 优化问题:遗传算法可以应用于各种优化问题,如工程设计、物流优化、路径规划、参数调优等。 它可以帮助找到最优或接近最优解,解决复杂的多目标优化问题。...机器学习:遗传算法可以用于机器学习的特征选择和参数调优。 例如,使用遗传算法来选择最佳特征组合,或者通过遗传算法搜索最佳参数配置以提高机器学习算法的性能。...调度和排程问题:遗传算法可以应用于解决调度和排程问题,如作业车间调度、员工排班、交通信号优化等。 它可以找到最佳的任务分配和调度策略,从而提高效率和降低成本。...约束满足问题:遗传算法可以用于解决约束满足问题,如布尔满足问题(SAT)、旅行商问题(TSP)等。 它可以搜索解空间,寻找满足所有约束条件的最优解或近似最优解。
01 模型简介 最优子集回归是多元线性回归方程的自变量选择的一类方法。从全部自变量所有可能的自变量组合的子集回归方程中挑选最优者。...数据相关性可视化表达 library(corrplot) data.cor <- cor(data) corrplot(data.cor, method = "ellipse") #是否提示多重共线性问题...04 采用regsubsets() 筛选 library(leaps) sub.fit <- regsubsets(BSAAM ~ ., data = data)# 执行最优子集回归 best.summary...,以及每个回归方程对应的评价指标,采用which函数选取最优的回归方程。...,xlab = "numbers of Features", ylab = "adjr2",main = "adjr2 by Feature Inclusion") 究竟是哪些变量是入选的最优变量呢
领取专属 10元无门槛券
手把手带您无忧上云