机器学习中,首先要考虑学习什么样的模型,在监督学习中,如模型y=kx+b就是所要学习的内容。
机器学习算法大都遵从同样的套路:设定需要学习的参数,通过最优化算法来最小(大)化学习目标,从而得到一组最好的待学习参数。例如,线性回归z=ax+by中,参数就是a和b,目标就是z和真值之间的差的平方,通过最小化这一目标,可以得到最优的a和b。 因此,最优化算法在机器学习中扮演了重要角色,而梯度下降则是最为常用的一种最优化方法。 梯度下降算法图示 假定我们要找到使得函数J(θ)最小的θ,即计算下面问题 要怎么做呢?由导数的知识我们知道,一个函数的导数表示当自变量增大时,函数值是变大还是变小。导数大于零
量子计算是否有望在10-15年之内取得重大进展,走出实验室,真正应用在解决实际问题中?
统计学习基于训练数据集,根据学习策略,从假设空间中选择最优模型,最后需要考虑用什么样的计算方法来求解最优模型。
版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。
前者如实现一个功能、搭建一个服务、实现一种展现交互方式等。更关注的是如何实现功能,如何对于各种复杂甚至小众的场景都不出错。互联网中典型的后端、前端、平台、网络工程师的主要工作是这一类。
机器学习实战 - 读书笔记(05) - Logistic回归 解释 Logistic回归用于寻找最优化算法。 最优化算法可以解决最XX问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大? 我们可以看到最XX问题,有寻找最小(最短时间)和最大等。 解决最小类问题会使用梯度下降法。可以想象为在一个山坡上寻找最陡的下坡路径。 同理,解决最大类问题会使用梯度上升法。可以想象为在一个山坡上寻找最陡的上坡路径。 寻找最优化算法,可以通过试图找到一个阶跃
本文主要是从通俗直观的角度对机器学习中的无约束优化算法进行对比归纳,详细的公式和算法过程可以看最后附的几个链接,都是干货。 机器学习基本概念 统计机器学习整个流程就是:基于给定的训练数据集,由实际需求,需要解决的问题来选择合适的模型;再根据确定学习策略,是最小化经验风险,还是结构风险,即确定优化目标函数;最后便是采用什么样的学习算法,或者说优化算法来求解最优的模型。参照《统计机器学习方法》所讲,统计机器学习(特指有监督学习)的三要素为: 1)模型 模型是指基于训练数据集,所要学习到的概率分布
2021 年伊始,机器之心发布《2020-2021 全球 AI 技术趋势发展报告》,基于顶会、论文及专利等公共数据、机器之心专业领域数据仓库,通过数据挖掘定位七大趋势性 AI 技术领域。
在未来的AI时代,“手工程序”将变得越发稀有,而基于通用AI程序,通过大数据“习得”而生的程序,会无所不在。到那时,程序员将光荣卸任,取而代之的是一个新职业物种:他们无需像程序员那样了解所有细节,而是
近日,北京金融科技产业联盟正式公布了2023年度优秀课题评选结果,腾讯云参与研究的多个课题入选年度“优秀课题”,研究内容涵盖应用创新、分布式数据库、金融数据、金融信息基础设施、开源技术、量子技术、5G等领域,对金融行业全面应用国产技术栈具有重要的指导意义,对金融机构深化数字化转型升级具有重要的参考价值。本次2023年度优秀课题成果专题,将为大家介绍优秀课题研究的获奖情况和具体成果,以及其他相关课题研究成果。
但“数学”二字所包含的内涵与外延太广,到底其中的哪些内容和当前的人工智能技术直接相关呢?
当我们要训练一个已经写好的神经网络时,我们就要直面诸多的超参数啦。这些超参数一旦选不好,那么很有可能让神经网络跑的还不如感知机。因此在面对神经网络这种容量很大的model前,是很有必要深刻的理解一下各个超参数的意义及其对model的影响的。
机器学习中,首先要考虑学习什么样的模型,在监督学习中,如模型 y=kx+b 就是所要学习的内容。 模型通常分为决策函数或条件概率分布。由决策函数表示的模型为非概率模型,由条件概率分布表示的模型为概率模型。
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,小编将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归。训练分类器就是为了寻找最佳拟合参数,使用的是最优化算法。 这就是简单的线性回归问题,可以通过最小二乘法求解其参数,最小二乘法和最大似然估计。 但是当有一类情况如判断邮件是否为垃圾邮件或者判断患者癌细胞为恶性的还是良性的,这就属于分类问题了,是线性回归所无法解决的。这里以线性回归为基础,讲解logistic回归用于解决此类分类问题。 python代码的实现 (1) 使用梯度上升找到最佳参数 from num
未来一周,AI 顶会 NeurIPS 2018 将于当地时间 12 月 2 日-8 日在加拿大蒙特利尔举行。2016 年有 5000 人注册参加该会议,2017 年参会人数飙升至 8000,今年则出现了 11 分钟大会门票被抢光的盛况。近年来,很多科技巨头在 NeurIPS 会议期间举行一些 party 来招揽人才,如英特尔、亚马逊、IBM、英伟达、谷歌、苹果、特斯拉、Uber 等。
面对越来越深的深度学习模型和海量的视频大数据,人工智能算法对计算资源的依赖越来越高。为了有效提升深度模型的性能和效率,通过探索模型的可蒸馏性和可稀疏性,本文提出了一种基于 “教导主任 - 教师 - 学生” 模式的统一的模型压缩技术。
前言:“熵”最初是热力学中的一个概念,后来在信息论中引入了信息熵的概念,用来表示不确定度的度量,不确定度越大,熵值越大。极限情况,当一个随机变量均匀分布时,熵值最大;完全确定时,熵值为0。以最大熵理论为基础的统计建模已经成为近年来自然语言处理领域最成功的机器学习方法。
由于工作内容接触到点云标定,需要用到最小二乘法,所以特意花了点时间研究LM算法,但是由于大学的高等数学忘得差不多了,所以本文从最基本的一些数学概念开始;
一直以来非常陌生但却被知乎在最优化神坛上奉为圭臬的一个方法就是变分法,也成为了一大批数学类专业学生分析解决问题的利器,下面我将用比较简单的话术来解释这个比较抽象又比较实用的方法,一步步推导至揭开它的神秘面纱
启发式算法(heuristic)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。
它的原理是Newton-Raphson算法,又叫做牛顿-拉裴森(Newton-Raphson)方法,是一维求根方法中最著名的一种。其特点是在计算时需要同时计算函数值与其一阶导数值,从几何上解释,牛顿法是将当前点处的切线延长,使之与横轴相交,然后把交点处值作为下一估值点。
NeurIPS 2018终于开始,主会场排满了6500人的座位,旁边还有能容纳1500人的房间。
url:https://blog.csdn.net/kexuanxiu1163/article/details/99912481
在上一次的介绍中,我们稍微了解到了关于support vector machine 的一些入门知识。今天,我们将真正进入支持向量机的算法之中,大体的框架如下: 1、最大间隔分类器 2、线性可分的情况(详细) 3、原始问题到对偶问题的转化 4、序列最小最优化算法 1、最大间隔分类器 函数间隔和几何间隔相差一个∥w∥ 的缩放因子(感觉忘记的可以看一下上一篇文章)。按照前面的分析,对一个数据点进行分类,当它的间隔越大的候,分类正确的把握越大。对于一个包含n 个点的数据集,我们可以很自然地定义它的间
AI领域顶会NeurIPS正在加拿大蒙特利尔举办。本文针对实验室关注的几个研究热点,模型压缩、自动机器学习、机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享。Enjoy!
二分类的线性分类模型,也是判别模型。 目的是求出把训练数据进行线性划分的分离超平面。 感知机是神经网络和支持向量机的基础。 学习策略:极小化损失函数。损失函数对应于误分类点到分离超平面的总距离。 基于随机梯度下降法对损失函数的最优化算法,有原始形式和对偶形式。
序列最小最优化算法(Sequential minimal optimization)
对于二类分类问题,训练集T={(${ x }{ 1 }$,${ y }{ 1 }$),(${ x }{ 2 }$,${ y }{ 2 }$),...,(${ x }{ n }$,${ y }{ n }$)},其类别${ y }_{ n }\in ${-1,1},线性SVM通过学习得到分离超平面:
AI科技评论报道 AI科技评论今天推出美国高校博士招聘,来自北卡州立大学(北卡罗莱纳州立大学)的助理教授胥栋宽博士和刘孝睿博士等你加入团队。 学校&城市介绍 北卡州立大学位于北卡罗来纳州的州府--罗利市 (Raleigh),与北卡罗来纳大学教堂山分校以及杜克大学相邻,三校间构成全美著名的三角研究园(Research Triangle Park)。根据2022年US News全美排名,北卡州立大学工学院排名26,计算机系排名49,统计专业排名11,工业工程排名16。 三角研究园内含有超过300家公司,包括
1.基础概念 统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,也称统计机器学习。统计学习是数据驱动的学科,是一门概率论、统计学、信息论、计算理论、最优化理论及计算机科学等多个领域的交叉学科。 统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。 统计学习的目的就是考虑学习什么样的模型和如何学习模型。 统计学习方法包括模型的假
AI科技评论按:“算法”这两字在人工智能圈已然成为“高大上”的代名词,由于不少在校生和职场新人对它过度迷恋,多名 AI 资深人士均对这一现象表示担忧。李开复曾这样说到: 现在的 AI 科学家大部分是在科研环境中培养出来的,不但欠缺工程化、产品化的经验,而且对于错综复杂的商业环境也并不熟悉,更缺乏解决实际问题所必须的数据资源。 随着开源框架层出不穷,人工智能产品化和商业化进程不断加速,使得算法的门槛逐渐降低,但对工程的要求不断在提高。这种情况下,实际应用和工程能力基础扎实的技术人才变得异常抢手。 其实 AI
7月31日,2018年第6期犀牛鸟·学问 — 腾讯AI Lab犀牛鸟访问学者系列报告研讨会在腾讯滨海大厦顺利举行,本次研讨会由腾讯高校合作、腾讯AI Lab 和CCF YOCSEF深圳联合主办。五位正在腾讯AI Lab访问的犀牛鸟访问学者受邀作学术报告,并与参会人员进行了深入交流。 首先,中国香港城市大学数学系副教授周翔老师带来了题为“ 鞍点计算的理论和方法”的报告。周教授详细介绍了稀有事件中,如何稳定、快速的计算指定指标的鞍点,包括Gentlest Ascent Dynamics 和基于优化
导读 本系列将持续更新20个机器学习的知识点。 1. 岭回归 2. 安斯库四重奏 3. 偏差方差 4. 自助采样法 5. 能力 6. 最优化算法 7. 常见激活函数 8. 凹凸函数 9. 条件概率 10. 置信区间 11. 模型的一致性 12. 代价函数 13. 交叉熵 14. 决策边界 15. 特征选择策略 16. 核主成分分析 17. 核技巧 18. L1范数 19. L2范数 20. Lasso
在2020年还在整理XGB的算法,其实已经有点过时了。不过,主要是为了扩大知识面和应付面试嘛。现在的大数据竞赛,XGB基本上已经全面被LGB模型取代了,这里主要是学习一下Boost算法。之前已经在其他博文中介绍了Adaboost算法和Gradient-boost算法,这篇文章讲解一下XGBoost。
作 者:崔家华 编 辑:李文臣 四、使用Sklearn构建Logistic回归分类器 开始新一轮的征程,让我们看下Sklearn的Logistic回归分类器! 官方英文文档地址:http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression sklearn.linear_model模块提供了很多模型供我们使用,比
CCF YOCSEF专题探索班 经典传承系列讲座(TDSx)是YOCSEF计划于2018年度启动的创新型系列活动,该活动计划邀请相关技术领域杰出学者回顾经典,追本溯源,向业界和社会传播学术思想。腾讯作为经典传承系列讲座的战略合作伙伴,双方将在论坛组织、传播等方面开展合作,为营造良好的学术氛围共同努力。 作为系列论坛的首场活动,“经典流传的计算机算法:起源、应用与影响”将在CNCC期间(10月25日下午)举行。 计算机算法是计算机科学的基石。过去几十年中伴随着计算机科学的迅速发展,一些经典流传的算
导读:AI领域顶会NeurIPS正在加拿大蒙特利尔举办。本文针对实验室关注的几个研究热点,模型压缩、自动机器学习、机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享。Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学术会议。今年为第32届会议,将于 12月3日至8日在加拿大蒙特利尔举办。腾讯AI Lab第三次参加Ne
1.统计学习 统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。 统计学习的目的就是考虑学习什么样的模型和如何学习模型。 统计学习方法包括模型的假设空间、模型选择的准则以及模型学习的算法。实现统计学习的步骤如下: (1) 得到一个有限的训练数据集合; (2)
在数学最优化中,Rosenbrock 函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock 在 1960 年提出 。也称为 Rosenbrock 山谷或 Rosenbrock 香蕉函数,也简称为香蕉函数。 Rosenbrock 函数的定义如下:
AI 科技评论按:2018 年 5 月 31 日-6 月 1 日,中国自动化学会在中国科学院自动化研究所成功举办第 5 期智能自动化学科前沿讲习班,主题为「深度与宽度强化学习」。
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,SIGAI将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
前段时间,纽约大学 Chat-Chip 项目,引爆热潮。与此同时,中科院计算所在 arXiv 发布 ChipGPT 工作,两队人马争先后,只相差一日!
香港城市大学 张青富教授团队 博士后、研究助理及博士生招聘 张青富教授个人主页: https://www.cs.cityu.edu.hk/~qzhan7/index.html 研究方向 计算智能 启发式算法设计 最优化算法 多目标优化 机器学习 …… 及其他相关领域 基本要求|申请 1. 有强烈上进心和自律力,热爱科研,有团队合作精神。 2. 有数学基础和熟练的计算机编程能力。 3. 英文熟练,有写作能力。 团队目前招聘 1. 一般项目博士后研究助理及博士生 对毕业学校无特别要求
最优化算法的一种,解决无约束优化问题,用递归来逼近最小偏差的模型。 关于梯度的概念可参见以前的文章: 从方向导数到梯度 梯度下降法迭代公式为: image.png
一切数据都可以分为两种,即定性数据和定量数据。 定性数据: 没有数值特征,不能进行数学运算,分为分类数据和顺序数据两类, (1)分类数据如反映“性别”、“职业”等现象的属性特点的数据,只能用来区分事物,而不能用来表明实物之间的大小、优劣关系。 (2)顺序数据,是只能归于某一有序类别的非数字型数据。顺序数据虽然也是类别, 但这些类别是有序的。比如将产品分为一等品、二等品、三等品、次品等 ,相应的观察结果就是顺序数据,顺序数据的数据之间虽然可以比较大小,却无法计算相互之间的大小、高低或优劣的距离。 定量数据: 反应“考分”、“收入”等可以用数值表示的变量,具有明确的数值含义,不仅可以分类还可以具体计算大小和差异。 之所以介绍两种数据类型,是因为还有一个概念是线性回归,线性回归分析的是定量数据,而逻辑回归分析的是分类数据,属于定性数据。
论文 1:An Efficient Evolutionary Algorithm for Subset Selection with General Cost Constraints
领取专属 10元无门槛券
手把手带您无忧上云