首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习中常用优化算法介绍

作者 | Walker 编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】:本文主要介绍了常用的一些机器学习中常用的优化算法。...我们把解决此类优化问题的方法叫做优化算法优化算法本质上是一种数学方法,常见的优化算法包括梯度下降法、牛顿法、Momentum, Nesterov Momentum, Adagrad, Adam等。...其实大部分机器学习算法的本质都是建立优化模型,通过优化算法对损失函数(优化的目标函数)进行优化,从而训练出最好的模型。 (1)梯度下降法 梯度下降法是最常用的一种优化算法。...(2)梯度下降法的变式 通常基于梯度的下降方法又有很多变式,我们主要为大家介绍:随机梯度下降法(SGD), Momentum, Nesterov Momentum, Adagrad, Adam。...【总结】:除了以上几类较为常见的优化算法以外,还有共轭梯度法、启发式优化算法等。在实际的机器学习问题中,往往需要具体问题具体分析,根据每类优化问题的特征,选择合适的优化算法

95010

谁能想到,求值的算法还能优化

其实不然,其中的细节操作十分精妙,渐进时间复杂度肯定是 O(n) 无法再减少,但如果深究算法的执行速度,仍然有优化空间。...接下来,我们想办法优化这两个算法,使这两个算法只需要固定的1.5n次比较。 最大值和最小值 为啥一般的解法还能优化呢?肯定是因为没有充分利用信息,存在冗余计算。...对于这个问题,还有另一种优化方法,那就是分治算法。大致的思路是这样: 先将数组分成两半,分别找出这两半数组的最大值和最小值,然后max就是两个最大值中更大的那个,min就是两个最小值中更小的那个。...PS:其实这个分治算法可以再优化,比较次数可以进一步降到 n + log(n),但是稍微有点麻烦,所以这里就不展开了。...首先,分治算法是一种比较常用的套路,一般都是把原问题一分为二,然后合并两个问题的答案。如果可以利用分治解决问题,复杂度一般可以优化,比如以上两个问题,分治法复杂度都是1.5n,比一般解法要好。

83420
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    朴素贝叶斯算法介绍优化

    朴素贝叶斯(Naive Bayes) 贝叶斯公式 朴素贝叶斯算法其实原理很简单,要理解朴素贝叶斯算法我们首先得知道贝叶斯公式: ? 其中 ? 是在A发生的情况下B发生的可能性。...所以朴素贝叶斯算法的前提条件就是假设各个条件都是相互独立的,这也是朴素贝叶斯算法的朴素之处。 整个逻辑与上面的一致,分别计算当条件发生时各个类别的概率,哪个最大选哪个,在此就不赘述了。...优化 平滑处理 当待预测样本中出现了训练集中未出现的特征的时候(文本分类中非常常见),应用上述公式,不管是哪个类别,最后结果都是0,So为了增加算法的泛化能力,我们会统一给每个特征值加上一个固定值...针对文本分类 对于朴素贝叶斯算法,其实就是一个简简单单的公式,所以在算法优化的空间几乎没有,为了提升准确率,更多的时候我们需要在特征处理上下功夫。

    2.6K30

    性能优化|讲的清楚的垃圾回收算法

    结论:使用标记-清除算法,清理垃圾后会发现存活对象分布的位置比较零散,如果有有大对象需要分配的话,很难有连续的空间进行分配;缺点:效率低、空间碎片 复制算法 为了解决内存碎片问题,jvm大师们研究出了复制算法...,复制算法的原理是将内存空间分为两块,当其中一块内存使用完之后,就会将存活对象复制到另外一块内存上,将之前的内存块直接清理掉,这样就不会产生内存碎片的问题了。...使用复制算法,内存前后对比 ? ? 结论:解决了内存碎片的问题,但是会导致内存空间缩减一半,适用于存活对象少的区域。...标记整理算法 标记整理算法的步骤和标记-清除是一样的,不过最后多加一步就是整理,用来整理存活对象造成的内存碎片,使用标记-整理后内存前后对比: ? ?...分代收集算法 分代收集算法主要就是将内存分为两个年代,一个是年轻代,一个是老年代,在年轻代中使用复制算法,因为年轻代存活的对象少,比较适合使用复制算法,老年代使用标记整理算法,因为老年代垃圾比较少,所以适用于标记整理算法

    85220

    入门 | 目标函数的经典优化算法介绍

    选自3dbabove 机器之心编译 参与:乾树、刘晓坤 本文使用通俗的语言和形象的图示,介绍了随机梯度下降算法和它的三种经典变体,并提供了完整的实现代码。...找到生成最小值的一组参数的算法被称为优化算法。我们发现随着算法复杂度的增加,则算法倾向于更高效地逼近最小值。...我们将在这篇文章中讨论以下算法: 随机梯度下降法 动量算法 RMSProp Adam 算法 随机梯度下降法 我的「Logistic 回归深入浅出」的文章里介绍了一个随机梯度下降如何运作的例子。...您应该注意到,如果θ的初始值较大,则优化算法将在某一个局部极小处结束。然而,如上所述,在极高维度空间中这种可能性并不大,因为它要求所有参数同时满足凹函数。...总结 优化目标函数的算法有相当多的选择。

    2K50

    最全的机器学习中的优化算法介绍

    在机器学习中,有很多的问题并没有解析形式的解,或者有解析形式的解但是计算量很大(譬如,超定问题的最小二乘解),对于此类问题,通常我们会选择采用一种迭代的优化方式进行求解。   ...这些常用的优化算法包括:梯度下降法(Gradient Descent),共轭梯度法(Conjugate Gradient),Momentum算法及其变体,牛顿法和拟牛顿法(包括L-BFGS),AdaGrad...当然是选择陡峭的地方,这也是梯度下降法的核心思想:它通过每次在当前梯度方向(陡峭的方向)向前“迈”一步,来逐渐逼近函数的最小值。   ...缺点: α是个定值(在原始的版本),它的选取直接决定了解的好坏,过小会导致收敛太慢,过大会导致震荡而无法收敛到最优解。 ?...优点:结合Momentum和Adaprop,稳定性好,同时相比于Adagrad,不用存储全局所有的梯度,适合处理大规模数据 一说,adam是世界上最好的优化算法,不知道用啥时,用它就对了。

    1.1K30

    史上简单!冒泡、选择排序的Python实现及算法优化详解

    冒泡排序、简单选择排序、直接插入排序就是简单排序算法。 评价排序算法优劣的标准主要是两条:一是算法的运算量,这主要是通过记录的比较次数和移动次数来反应;另一个是执行算法所需要的附加存储单元的的多少。...2、简单排序之冒泡法Python实现及优化 原理图 2.1、基本实现 2.2、优化实现 思路:如果本轮有交互,就说明顺序不对;如果本轮无交换,说明是目标顺序,直接结束排序。...原理图 3.1、基本实现 3.2、优化实现——二元选择排序 思路:减少迭代次数,一轮确定2个数,即最大数和最小数。...3.3、等值情况优化 思路:二元选择排序的时候,每一轮可以知道最大值和最小值,如果某一轮最大最小值都一样了,说明剩下的数字都是相等的,直接结束排序。...还可能存在一些特殊情况可以优化,但是都属于特例的优化了,对整个算法的提升有限。

    1.9K40

    神经网络优化算法总结优化算法框架优化算法参考

    优化算法框架 优化算法的框架如下所示: $$ w_{t+1} = w_t - \eta_t \ \eta_t = \cfrac{\alpha}{\sqrt{V_t}} \cdot m_t $$...,g_t) \ g_t = \nabla f(w_t) $$ 一阶动量和二阶动量均是历史梯度和当前梯度的函数 优化算法 固定学习率优化算法 学习率固定的优化算法均有一个特点:不考虑二阶动量(即$M..._2(g_i) = I$) 随机梯度下降(SGD) 随机梯度下降时简单的优化算法,有:$m_t = g_t,V_t = I$,带入公式有优化公式为:$\eta_t = \alpha \cdot g_t...m_{t-1}) \ m_t = \beta \cdot m_{t-1} + (1-\beta)\cdot g_t \ \eta_t = \alpha \cdot m_t $$ 自适应学习率优化算法...自适应学习率的优化算法考虑二阶动量,一般来说,一阶动量决定优化方向,二阶动量自适应学习率 AdaGrad 二阶动量取梯度平方和:$V_t = \sum\limits^t_{i=1} g^2_i$,此时

    1.1K80

    优化算法】粒子群优化算法简介

    在此基础上,提出了一种基于元启发式( metaheuristic)的粒子群优化算法来模拟鸟类觅食、鱼群移动等。这种算法能够模拟群体的行为,以便迭代地优化数值问题。...例如,它可以被分类为像蚁群算法、人工蜂群算法和细菌觅食这样的群体智能算法。 J....)的强大算法,受鸟群中的规则启发,连续优化过程允许多目标和更多的变化。...---- 粒子群优化算法伪代码: 其中: V i ( k + 1 ) V_i(k+1) Vi​(k+1) 是下一个迭代速度; W W W 是惯性参数。...为了测试算法,Rastrigin函数将被用作误差函数,这是优化问题中最具挑战性的函数之一。在平面上有很多余弦振荡会引入无数的局部极小值,在这些极小值中,boid会卡住。

    1.1K20

    深度学习算法优化系列十七 | TensorRT介绍,安装及如何使用?

    介绍 TensorRT是NVIDIA推出的一个高性能的深度学习推理框架,可以让深度学习模型在NVIDIA GPU上实现低延迟,高吞吐量的部署。...TensorRT可以针对不同的算法,不同的网络模型,不同的GPU平台,进行 CUDA核的调整,以保证当前模型在特定平台上以最优性能计算。...不同的硬件如P4卡还是V100卡甚至是嵌入式设备的卡,TensorRT都会做优化,得到优化后的engine。...TensorRT使用流程 这里先看一下TensorRT简单的使用流程,后面复杂的应用部署也是以这个为基础的,在使用TensorRT的过程中需要提供以下文件(以Caffe为例): 模型文件(*.prototxt...总结 这篇是我的第一篇讲解TensorRT的文章,主要介绍了TensorRT,以及如何安装和使用TensorRT,之后会用例子来更详细的讲解。谢谢大家阅读到这里啦。 9.

    6K40

    懒惰的算法—KNN

    总第77篇 本篇介绍机器学习众多算法里面基础也是“懒惰”的算法——KNN(k-nearest neighbor)。你知道为什么是懒的吗?...该算法常用来解决分类问题,具体的算法原理就是先找到与待分类值A距离最近的K个值,然后判断这K个值中大部分都属于哪一类,那么待分类值A就属于哪一类。...02|算法三要素: 通过该算法的原理,我们可以把该算法分解为3部分,第一部分就是要决定K值,也就是要找他周围的几个值;第二部分是距离的计算,即找出距离他最近的K个值;第三部分是分类规则的确定,就是以哪种标准去评判他是哪一类...训练算法:KNN没有这一步,这也是为何被称为算法的原因。 测试算法:将提供的数据利用交叉验证的方式进行算法的测试。 使用算法:将测试得到的准确率较高的算法直接应用到实际中。...5、应用算法: 通过修改inX的值,就可以直接得出该电影的类型。

    1.9K50

    优化算法——遗传算法

    遗传算法的基本概念 遗传算法(Genetic Algorithm, GA)是由Holland提出来的,是受遗传学中的自然选择和遗传机制启发发展起来的一种优化算法,它的基本思想是模拟生物和人类进化的方法求解复杂的优化问题...基本定义 个体(individual):在遗传学中表示的是基因编码,在优化问题中指的是每一个解。 适应值(fitness):评价个体好坏的标准,在优化问题中指的是优化函数。...二进制编码 二进制编码是原始的编码方式,遗传算法最初是在二进制编码的方式下进行运算的。二进制编码也是遗传算法中使用最为直接的运算编码方式。二进制编码是指利用00和11对问题的解向量进行编码。...( 1-a_2 \right )x_2,\cdots ,a_ny_n+\left ( 1-a_n \right )x_n \right ) 变异(mutation) 变异操作的目的是使得基因突变,在优化算法中...我在这里简单介绍了遗传算法,遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助

    1.3K20

    优化算法——遗传算法

    遗传算法的基本概念 遗传算法(Genetic Algorithm, GA)是由Holland提出来的,是受遗传学中的自然选择和遗传机制启发发展起来的一种优化算法,它的基本思想是模拟生物和人类进化的方法求解复杂的优化问题...基本定义 个体(individual):在遗传学中表示的是基因编码,在优化问题中指的是每一个解。 适应值(fitness):评价个体好坏的标准,在优化问题中指的是优化函数。...二进制编码 二进制编码是原始的编码方式,遗传算法最初是在二进制编码的方式下进行运算的。二进制编码也是遗传算法中使用最为直接的运算编码方式。二进制编码是指利用00和11对问题的解向量进行编码。...适应度函数的计算 适应度函数的目的是评价个体的好坏,如上面的优化问题中,即为最终的优化目标函数。...我在这里简单介绍了遗传算法,遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助

    3.9K61

    hashlib 算法介绍

    Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。 什么是摘要算法呢?摘要算法又称哈希算法、散列算法。...摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。...摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算f(data)很容易,但通过digest反推data却非常困难。...比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法越慢,而且摘要长度更长。 摘要算法应用 任何允许用户登录的网站都会存储用户登录的用户名和口令。如何存储用户名和口令呢?...摘要算法在很多地方都有广泛的应用。要注意摘要算法不是加密算法,不能用于加密(因为无法通过摘要反推明文),只能用于防篡改,但是它的单向计算特性决定了可以在不存储明文口令的情况下验证用户口令。

    54220

    kmeans优化算法

    k-means算法的优、缺点 1、优点: ①简单、高效、易于理解 ②聚类效果好 2、缺点: ①算法可能找到局部最优的聚类,而不是全局最优的聚类。使用改进的二分k-means算法。...优化方法 二分k-means算法:首先将整个数据集看成一个簇,然后进行一次k-means(k=2)算法将该簇一分为二,并计算每个簇的误差平方和,选择平方和最大的簇迭代上述过程再次一分为二,直至簇数达到用户指定的...算法进行细聚类。...k-means算法的k值自适应优化算法:首先给定一个较大的k值,进行一次k-means算法得到k个簇中心,然后计算每两个簇中心之间的距离,合并簇中心距离最近的两个簇,并将k值减1,迭代上述过程,直至簇类结果...参考: k-means算法、性能及优化

    1.9K30
    领券