首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

经典卷积网络--InceptionNet

经典卷积网络--InceptionNet 1、InceptionNet网络模型 2、1 * 1的卷积运算是如何降低特征厚度?...完整实现(使用CIFAR10数据集) 借鉴点:一层内使用不同尺寸的卷积核,提升感知力(通过 padding 实现输出特征面积一致); 使用 1 * 1 卷积核,改变输出特征 channel 数(减少网络参数...1、InceptionNet网络模型   InceptionNet 即 GoogLeNet,诞生于 2015 年,旨在通过增加网络的宽度来提升网络的能力,与 VGGNet 通过卷积层堆叠的方式(纵向)相比...显然,InceptionNet 模型的构建与 VGGNet 及之前的网络会有所区别,不再是简单的纵向堆叠,要理解 InceptionNet 的结构,首先要理解它的基本单元,如图1.1所示。

1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    卷积神经网络2.2经典网络

    Computer Science, 2014. 2.2 经典网络 LeNet-5 LeNet 针对的是单通道的灰度图像 原始图像为 的单通道灰度图像 第一层使用的是 个 的卷积核,步长为 1,...各网络层之间存在连接,每个卷积核的信道数和其输入的信道数相同。...讨论 AlexNet 网络比 LeNet-5 网络要大的多,LeNet-5 网络大约有 6 万个参数,AlexNet 网络包含约 6000 万个参数。这使得其能识别更多的特征。...AlexNet 网络比 LeNet-5 网络表现更为出色的另一个原因是因为它使用了 ReLU 激活函数 对于 AlexNet,其使用了 LRN 的结构(局部响应归一化),简单而言是在中间特征图中每一个点上所有信道的值进行归一化操作...具体网络结构如下图所示: ? 讨论 VGG-16 指的是这个网络包含 16 个卷积层和全连接层,总共包含 1.38 亿个参数。虽然网络较大,参数量多,但是结构并不复杂。网络结构十分规整。

    1.9K30

    经典分类网络结构

    学习目标 目标 知道LeNet-5网络结构 了解经典的分类网络结构 知道一些常见的卷机网络结构的优化 知道NIN中1x1卷积原理以及作用 知道Inception的作用 了解卷积神经网络学习过程内容...应用 无 下面我们主要以一些常见的网络结构去解析,并介绍大部分的网络的特点。...3.3.1.1 网络结构 激活层默认不画网络图当中,这个网络结构当时使用的是sigmoid和Tanh函数,还没有出现Relu函数 将卷积、激活、池化视作一层,即使池化没有参数 3.3.1.2 参数形状总结...,其实去了解设计网络最好的办法就是去研究现有的网络结构或者论文。...,称为“网络中的网络”(NIN),增强接受域内局部贴片的模型判别能力。

    1.3K20

    网络经典命令行

    1.最基本,最常用的,测试物理网络的   ping 192.168.0.8 -t ,参数-t是等待用户去中断测试 2.查看DNS、IP、Mac等   A.Win98:winipcfg   ...202.99.160.68   Non-authoritative answer:   Name: pop.pcpop.com   Address: 202.99.160.212 3.网络信使...:   ARP -s 192.168.10.59 00 -50-ff-6c-08-75   解除网卡的IP与MAC地址的绑定:   arp -d 网卡IP 8.在网络邻居上隐藏你的计算机...计算机上安装的每一个以太网或令牌环网络适配器都有自己单独的表。如果在没有参数的情况下使用,则 arp 命令将显示帮助信息。   ...只有当网际协议 (TCP/IP) 协议在 网络连接中安装为网络适配器属性的组件时,该命令才可用。

    61210

    经典网络(Yolo)再现,全内容跟踪

    关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 经典网络(Yolo) 今天接着上一篇的内容继续...也被上一篇“Faith”读者说对了,在此也感谢大家的关注与阅读,O(∩_∩)O谢谢 YOLO 看到这个封面,相信很多很多都阅读过,其实这是一篇“基于回归方法的深度学习目标检测算法”的经典之作,如果兴趣的您...相比于之前介绍的几个网络,明显高于之前说的几个简单目标检测网络。下面来一个YOLO V2的宣传片!有兴趣的您,可以自己去做一个模型玩一玩,其实过程很不错!...我自己来总结下YOLO: YOLO网络的结构和在之前得模型比较类似,主要是最后两层的结构,卷积层之后接了一个4096维的全连接层,然后后边又全连接到7*7*30维的张量上。...实际上这个7*7就是划分的网格数,现在要在每个网格上预测目标两个可能的位置及这个位置的目标置信度和类别,也就是每个网络预测两个目标,每个目标的信息有4维坐标信息(中心点坐标+长宽),1个目标的置信度,还有类别数

    67010

    卷积神经网络经典模型

    下图展示了一些经典模型的准确率和参数数量。 注:Gops表示处理器每秒进行的操作次数,1Gops表示处理机每秒进行 10^9 次操作。 2....关于前向传播、反向传播以及神经网络可以看:机器学习:神经网络(一) 机器学习:神经网络(二) 全连接层有很好的非线性表示能力,在卷积神经网络中一般用于最终的分类。...VGG网络经典的CNN结构开发到了极致,并达到了深度的极致。在VGG之后出现的各种网络都是在模型结构上进行了改变(如GoogLeNet的inception结构和ResNet的残差结构)。...ResNet 8.1 ResNet网络介绍 我们知道要提升网络性能,除了更好的硬件和更大的数据集以外,最主要的办法就是增加网络的深度和宽度,而增加网络的深度和宽度带来最直接的问题就是网络参数剧增,使得模型容易过拟合以及难以训练...但是,当网络收敛后,又暴露出了一个问题,就是网络退化。当网络深度变深后,准确率开始达到饱和,然后迅速退化,并且这种现象不是由梯度消失和过拟合造成的。

    4.3K20

    经典卷积网络之GooleInceptionNet

    网络结构简介 GooleInceptionNet首次出现是在2014年的ILSVRC的比赛中,当时是第一名,最大的特点就是控制计算量的同时获得了比较好的分类性能--top-5错误率为6.67%。...Inception V1中指出,这种结构可以有效增加网络的深度和宽度,提升准确率且不至于过拟合。 人的神经元的连接是比较稀疏的,所以研究者认为大型神经网络的合理连接方式也应该是稀疏的。...尤其是对于非常大型,非常深的神经网络来说更是如此,Inception Net的主要目标就是找到最优的稀疏结构单元(Inception Module)。...,同时收敛后的分类准确率也可提高,BN层用于神经网络的某层时,会对每一个MINI-batch数据内部进行标准化,使输出规范化到N(0,1)的正太分布,减少了内部神经元分布的改变,BN的论文指出,传统的深度神经网络在训练的时候...有35-35,17-17,8-8三种不同的结构(输入尺寸),这些结构只在网络的后部出现,前部分还是普通的卷积层,而且其还在分支中使用了分支。如下图。 ?

    83020

    经典网络模型总结之GoogLeNet篇

    **************分割线************** 前面介绍了Alexnet,比较经典的模型,还差好几个,但是我这些理解的也不深,最关键的是有很多人比我讲的好。囧。...GoogLeNet告诉我们,卷积神经网络没有最深,只有更深。因为理论上来说,越深的网络可以学习到的特征越多,这样就有利于分类。插一张神图,哈哈哈。 ?...Inception结构在Pooling之前还加了Relu激活函数,这个可以提高网络的非线性。...做了这么多工作其实主要就是为了在增加模型深度的前提下,尽量减小模型的计算量,也就是说,你不能一味的追求网络的深度而不考虑内存,GPU的限制吧!...GoogLeNet的训练时间在普通的GPU上仅用了一周的时间,这里大概可以体会一下GoogLeNet的牛逼的地方,不要觉得一周的时间很久,像这么深的网络结构,能做到一周很不错了。

    1.4K40

    神经网络知识点总结_经典神经网络

    本文基于文章“Deep Learning:Technical introduction”,对神经网络的知识点做一个总结,不会对某些概念性的东西做详细介绍,因此需要对神经网络有基本的了解。...FNN:前馈神经网络   神经网络的最基本也是最经典的形式,结构包括输入层,隐藏层和输出层,根据隐藏层的多少,分为shallow network和deep network(deep learning...Dropout在批正则化出现之前,一直是神经网络中效果最好的正则化技术。...Backpropagation   反向传播就是神经网络中的梯度下降法,我们在前面通过前向传播,将数据输入,得到网络的预测输出,然后,我们根据预测值和实际值的区别,将梯度从网络输出层反向传递至输入层,并在此过程中优化模型参数...它是当前神经网络最成功的训练方法。

    75020

    长篇tcp 网络,汇集大小厂经典问题

    该分享分享一些大小厂核心面试【模块】点了,特意总结了周围一波朋友的【 tcp 网络】的面试点。因此本篇有点长,建议收藏慢慢看,你用的到,我也用的到。...对于可靠的:无论网络链路种出现了怎么样的变化,tcp都可以保证一个报文一定能够达到接收端。...网络中可能存在来自发送方的数据包,当这些发送方的数据包被接收方处理后又会向对方发送响应,所以一来一回需要等待 2 倍的时间。...MSL 是 Maximum Segment Lifetime,报文最大生存时间,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。...结尾: 《UNIX网络编程》一书中却说道:TIME_WAIT 是我们的朋友,它是有助于我们的,不要试图避免这个状态,而是应该弄清楚它。

    43620

    深度学习经典网络解析:4.DenseNet

    1.背景介绍   DenseNet是CVPR2017年的Best Paper,它脱离了加深网络层数(ResNet)和加宽网络结构(Inception)来提升网络性能的定式思维,从特征的角度考虑,通过特征重用和旁路...Fractal Nets通过将不同深度的网络并行化,在获得了深度的同时保证了梯度的传播,随机深度网络通过对网络中一些层进行失活,既证明了ResNet深度的冗余性,又缓解了上述问题的产生。...虽然这些不同的网络框架通过不同的实现加深的网络层数,但是他们都包含了相同的核心思想:将feature map进行跨网络层的连接。...7, stride=1).view(features.size(0), -1) out = self.classifier(out) return out 深度学习经典网络解析...:2.AlexNet 深度学习经典网络解析:1.LeNet-5

    1.4K31

    计算机视觉经典网络回归--AlexNet

    网络结构 先看几张网络的结构图: ? 论文原文中的图 ?...细化的结构图 下面对网络中的一些细节进行介绍 3.1 非线性ReLU函数 在当时,标准的神经元激活函数是tanh()函数,即 这种饱和的非线性函数在梯度下降的时候要比非饱和的非线性函数慢得多,因此,在AlexNet...中使用ReLU函数作为激活函数 下面这种图展示了在一个4层的卷积网络中使用ReLU函数在CIFAR-10数据集上达到25%的训练错误率要比在相同网络相同条件下使用tanh函数快6倍 ?...3.5 总体结构 网络的最后一层(Full8)的输出给了一个包含1000个单元的softmax层,用来对1000个标签进行预测。...但是不使用这种方法又会导致严重的过拟合,迫使我们使用更小的网络

    1.1K10
    领券